Successful Endeavours - Electronics Designs That Work!
all questions viagra australia about the problems cialis australia for men

IoT Interoperability

There are several big issues with IoT. The primary 2 are Security and Interoperability. We have tackled IoT Security and so this post looks at how different devices and systems can work together. This is Interoperability.

The first thing to understand, is that middle ware providers like IBM do not want you to be able to exchange data independently of them. They want you captive to their ecosystem. They make money from you having to pay them for continued access to your own data. This inherently works against one aspect of interoperability.

IEEE has put together a useful introduction which you can access at Interoperability in the Internet of Things. This includes a useful audio explanation and detailed articles on each area plus sample projects.

IoT Interoperability

IoT InteroperabilityIoT

The IoT vision is for a highly connected and interoperable system but most systems do not interoperate well. And standards development is still ongoing which means there is no agreement in sight.

To explore further, there are some excellent resources at:

As usual, Europe seems to be doing more to foster unity and collaboration and has many excellent projects to help this. The Unify IoT project has published results which are freely available. They conclude that there are 300 IoT frameworks in use and 20 of them are quite popular. But no standards are expected anytime soon and the lack of standardisation is a big impediment to getting the full benefit from the technology.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Australian Manufacturing PMI

The Australian Manufacturing PMI is a measure of the manufacturing economy in Australia. A score above 50 means it is growing and a score below 50 means it is shrinking. I recently reported in the post about out new location that we had been in growth for the past 17 months but according to one data source we missed out for a couple of months during that time. For the history see:

So I thought I would double check the data. I went to the Trading Economies Australian Manufacturing PMI and looked at the trend since 2012. Here is what I saw.

Australia Manufacturing PMI 2016

Australia Manufacturing PMI 2016

So my understanding of this graph is that after the Global Financial Crisis we saw Australian Manufacturing decline but since 2012 the decline has slowed and this past year it has grown.

As a result, I continue to be encourage that Australian Manufacturing is Growing and we will continue to support that by developing modern electronics based products that are Made in Australia.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Brain Scanning

The ability to scan details of the brain is a common theme of both science fiction and also modern medicine’s wish list. So just how likely is it that we will be able to do that anytime soon?

Check out this image captured by a project focused on capturing the Wiring Diagram of the Brain.

MRI Brain Activity Scan

MRI Brain Activity Scan

Well in June 2016 researchers showed that they could uniquely identify a person with 99% confidence based purely on their brain scan. This uses newly developed magnetic resonance imaging equipment that has come out of the Human Connectome Project and can also show the following:

  • how you will perform on an IQ test
  • how you will perform on a memory task
  • how you will perform on a reading task

That seems pretty specific.

What we have learnt is that while we are all unique, there are some common elements we can use to define capabilities. We are still a long way from Gattaca and I am OK with that.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Outdoor Positioning Systems

We have all become very used to the idea that a phone or car can know where it is using GPS or one of the equivalent satellite based positioning systems. And it gets better all the time. Modern chips can get you down to centimeters under ideal conditions.

But have also all had the experience when we go indoors and the position information disappears.

So is there a solution for that?

Indoor Positioning Systems

It turns out there is. Or at least, there a quite a few. They all have their drawbacks and most require you to add technology to the indoor area to get it working. Lets do a quick survey to see what Indoor Positioning Systems are out there.

GPS Repeaters

GPS Repeater

GPS Repeater

The first one is using GPS indoors. If you have a high enough roof you can put a GPS repeater on it and project the satellite reception into the building and suddenly GPS works inside the building. We use exactly this technique when needing to test a GPS device inside our building. See GPS Repeaters for one example product.

Radio Beacons

This covers a very wide range of technologies, of which Bluetooth Beacons are the current industry trend. And they can work either way. You can wear the beacon and the receiver track you and use your RSSI to calculate your position, or you have the receiver and monitor the beacons to achieve the same result.

Bluetooth Smart Beacon

Bluetooth Beacon

Increasingly these systems are being used for applications like tracking patients in hospitals and residents in retirement villages.

WPS WiFi Positioning System

You have a WiFi network, so you can use the network as a WiFi Positioning System or WPS. This is similar to the Radio Beacon system and uses the RSSI from your device to the WiFi Access Points.

Dead Reckoning

This uses Inertial Navigation components to keep track of your distance and direction from a known point. It is usually used in conjunction with another system such as GPS outdoors and Dead Reckoning in tunnels to keep an accurate estimate of a vehicles position on a map. And low cost MEMs based devices are now available to provide Inertial Navigation readings.

MEMS Accelerometer

MEMS Accelerometer

The weakness is the double integration of the signals leads to noise accumulation and the accuracy of the position estimate decreases over time.

IR Techniques

These vary a lot. From a sea of emitters overhead to give a location grid to emitters firing down row and aisles in warehouses and even corner emitters firing angle encoded signals picked up and decoded using sine rule mathematics.

IR Angle Emitter

IR Angle Emitter

The image above is a system we design in 2006 to do angle based IR location detection in GPS blind spots for container handling equipment. This was capable of locating equipment to within 0.5m.

Time of Flight

This allows you to more accurately work out the distance from the emitter to the receiver but requires very precise timing in both.

Magnet Field Monitoring

This is an obvious one, but most modern smart phones have a compass in them. The usually aren’t a very good compassand that can make this option not viable. However if you do have a good enough compass, you can use local disortions on the magnetic field due to steel structures in a building to estimate your location.

Indoor Position Conclusion

And of course, you can use a combination of the above to meet the specific requirement you have. As usual, the classic trade offs apply. These are:

  • accuracy
  • cost
  • size
  • battery life

For some addition insights check out 10 things you need to know about Indoor Positioning.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Design Led Innovation

Traditional Product Development comes up with the product idea, does the development, gets it into production and then tries to find customers to sell it to.

Design Led Innovation tries to turn that process around so the actual needs of the customer or user become part of both the product definition and the business model development. If you haven’t already heard of it, check out the Business Model Canvas.

I get the opportunity to present on topics like Innovation to Business Groups and even MBA programs and one of the interesting statistics I use is that the number one area for Innovation in the world today is the Business Model.

How Does Design Led Innovation Work?

So how does this all work?

Design Led Innovation

Design Led Innovation Process

In Design Led Innovation, the expected outcome is that when you engage with your customer, and begin to understand their needs, then you can start to offer them something that has much higher value for them and allows you to get a better price for offering that much higher value. The outcome is the classic win:win that great business is meant to deliver. And it is a key factor in not getting caught in the classic commodity service price war with the client’s purchasing officer driving the process.

It is also a continuous process. One description is that it is like “rebuilding the plane while it is in flight”.

Sounds scary, but the results seem to show it is well worth doing.

Design Led Innovation session at SEBN

At a recent SEBN breakfast session we heard from Tricomposite about their  experience of using Design Led Innovation to revolutionise their business and not only service their existing customers better, but offer them products they didn’t even know they wanted and create a much better value offering for them than they had ever considered before. And this has opened up potential market offerings to other customers who they would never have considered they could work with.

Here are the themes they explored in finding this offering:

  • focus on designers, not buyers
  • test is time pressure leads to design mistakes
  • test is rapid full-sized final material prototypes were valuable
  • test if there was room for service level agreements
  • test if there was room for collaborative design

And the answer to 4 of these was a resounding yes. Only the service level agreement test failed. Basically, customers expect service as a given. But the rest has opened up a complete rethink of their business. In fact, they shared that it was their existing perspective on their business that proved to be their biggest limiting factor.

Business Model Canvas

Rethinking the Business Model is a key component of Design Led Innovation. But not as an end in itself. Only after understanding your customer’s real needs can you determine how to make it easier to do business with them.

I recommend getting the Business Model Canvas book and taking advantage of the free downloads at Strategyzer. Here is a example of one of their tools.

Business Model Canvas Example

Business Model Canvas Example

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

We Moved

That’s right. After 7 great years of growth and making a difference to the local manufacturing economy, we ran out of room. So it’s good bye to lovely Berwick Village and hello to Narre Warren.

Our new address is:

Suite 4, Level 1, 58 Victor Crescent, Narre Warren VIC 3805.

And we have a new phone number: 03 9796 0365

Successful Endeavours - 58 Victor Crescent

Successful Endeavours – 58 Victor Crescent

Above is a shot of the front of the building. Parking is in the rear and below you can see the 7 spots available for staff and visitors. Signage will happen in the next week or so.

Successful Endeavours - Parking

Successful Endeavours – Parking

Once you get inside the building (doors at front and rear) you take the lift to the first floor and then head along the corridor to your right and round the bend to the left. There will be signage on the front glass doors.

And here are some inside shots.

Just before the fit out was complete.

Successful Endeavours - Inside - Fit Out Nearly Complete

Successful Endeavours – Inside – Fit Out Nearly Complete

First load of furniture arrives on Saturday.

Successful Endeavours - Inside - First Furniture Delivery

Successful Endeavours – Inside – First Furniture Delivery

After the final load of furniture arrives and is assembled.

Successful Endeavours - Inside - Furniture Delivered

Successful Endeavours – Inside – Furniture Delivered

Monday morning we move the furniture into place and start setting up.

successful Endeavours - Inside - Up And Running

successful Endeavours – Inside – Up And Running

And by Monday lunch time and we are operational again.

Australian Manufacturing Continues To Grow

I’m really looking forward to being able to build the team and do more product development for manufacturers in Australia. Australian manufacturing has grown every month for the past 17 months so this isn’t just us, there are lots of other businesses growing; something I am particularly pleased to be able to report. It continues the trend I wrote about in July 2016 in Australian Manufacturing is Growing.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Digital Tomorrow is Today

The most recent Casey Cardinia Business Group breakfast heard from Chris Riddell, futurist. This is a summary of what he said.

Chris Riddell - Futurist

Chris Riddell – Futurist

The future is already here. The digital revolution has happened. So what about tomorrow?

This is the question Chris posed to the room at the start of his presentation.

Chris asserts that the technological revolution has already happened. Now it is Velocity that counts. So what does Velocity mean?
In Software Development, Velocity refers to the rate with which you are completing a project. If Velocity is too low, you will not finish on time. Ideally Velocity is above the original planned value and you will deliver ahead of schedule. At the very least, this allows you time to test comprehensively. Projects running late often compromise on test in order to save time. This tactic usually adds time in the long run.

His first example was OTTO. This is a start-up of ex Google employees who are developing self-driving track technology that can be retrofitted to existing trucks. So you don’t need to design a new vehicle, you can add their system to your existing fleet. They have early adopted product in the market (delivering beer via self-driving trucks) and hope to be fully market ready in 9 months. And uber bought OTTO. This rapid time to market is an example of the increasing Velocity available today.

OTTO self-driving truck

OTTO self-driving truck

A local example we are working with is Maintabase. This is a Melbourne based start-up that came to us 2 months ago with some “off the shelf” hardware to try and configure it as a demonstration of their asset management concept where you can monitor machine cycle and operating time automatically and identify when maintenance points will be reached. Like OTTO, this can be retrofitted to any existing machine. They were trying to use “off the shelf hardware” for good reason; low development cost. However the hardware was difficult to configure and use, not very flexible, and ultimately not what they wanted in a final product. It was never going to do what they needed and was only ever an interim measure. So we created the product they need and they are launching it at Future Assembly in the IoT Category. See Future Assembly – IoT – Maintabase for more details. So idea to launch in 8 weeks!

Maintabase

Maintabase

And then there is Tesla who have reinvented the modern passenger automobile and already offer autonomous cars.

Tesla

Tesla

And now a medical example. 23 and Me will send you a DNA kit. You provide a saliva sample in the test tube they provide. They then send you a detailed report describing your genetic ancestry, what health issues you will expect have in the future and even what kind of children you will have with your partner (you need 2 samples for that). This was banned in the USA due to concerns about how to regulate it so they moved to Europe and launched there. Now they are also able to operate in the USA. 5 years ago a service like this would have been prohibitively expensive. Now it is a very affordable tool to allow you to manage your life better.

23 and Me - Welcome to You

23 and Me – Welcome to You

We also see the huge burst of activity in Wearables that allow you to quantify things like quality of sleep, activity level and a whole range of health and other indicators. The Quantified Self requires measurement and these devices do a good deal of that already.

Lean Digital Start-Up

Computing technology is also changing so rapidly that you can do a hugely scalable start-up in a shed. This is technology going full circle. HP started in a shed. So did Google and Apple. The shed may become the new business launch model.

This allows a new class of business opportunities lumped under the banner of the Lean Start-Up. I’ve added “Digital” to the mix because there is a lot of emphasis now on being able to scale quickly. So we have the Lean Digital Start-Up. So low investment, low risk, potentially huge upside, potentially scalable. The failure rate of Lean Digital Start-Ups is unfortunately also huge. About 25 times the failure rate of conventional businesses. The risk due to failure is much lower and they can pivot rapidly. This is Agile applied to the Business Model.

Old world businesses are like huge plantations and have a specific focus and everything is about optimising that focal point. By comparison, the new business paradigm is like hacking your way through a rain forest looking for a breakthrough plant or animal that holds the cure to something incurable. The latter is a much more chaotic process and results are unpredictable.
Access to technology means that even mobile phone calls and SMS are old hat and is all about video, high speed data sharing and experience.

The Future – What Next?

BMW have just celebrated 100 years in business. That is a great achievement. If you go back 50 years, it was all about the product, the technology, the reliability. Today it is all about the experience. And they are talking about selling transportation services rather than vehicles in 10 years time.

Super Fluidity is now the norm. You can transfer data almost instantly to anywhere in the world. Today you can design a product , send the file somewhere else on the planet and have it 3D printed . You can now 3D print food. Oreos can be custom designed by you and then made for you and shipped to your address.

Why is Google self driving cars happening? Google do search and other data stuff. The answer from Google is that a driver-less car is a mechanical problem that needs an information solution. And Google are an information solution company.

Why is Lego still in business? It is a plastic block. Easy to copy and many have done it. Yet today they are the most influential toy company in the world. Everything is about the user. You can design your own kit, select the blocks, buy it and have it delivered to your door. You can build it on screen, have it 3D rendered and sent to your device to show or share with your friends.

Apple have enough cash on their books to pay out Greece’s national debt 3 times over and still run their business for a year even with no sales. And they did it by making their product easy to use and putting a full ecosystem together to support the user.

Air bnb, uber, Spotify and many other companies are leveraging great user experiences and offering great value.

We are headed into an era of no screens, augmented reality and where the world is your screen and data is your overlay.

Pretty exciting times lay ahead as we catch up with the capability the Digital Revolution already lays before us.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

IoT Security

The Internet of Things, or IoT, is a pivotal component of the future and is driving initiatives from Smart Cities through Ubiquitous Computing and Augmented Reality. Of course the next step up from Smart Cities is a Smarter Planet. But we aren’t at Smart Cities yet.

An enabling technology like IoT can also have roadblocks to adoption. The principal ones being addressed now are:

  • power consumption
  • cost of goods
  • size
  • security

The biggest issue right now is IoT Security. Recent DDoS (Distributed Denial of Service) attacks have used IoT Devices as the attack launchers. They are being selected because many have weaker security than fully fledged computing devices.

DDoS or Distributed Denial of Service

DDoS or Distributed Denial of Service

In a recent article on IEEE Spectrum on the Path to IoT Security it is argued that IoT Manufacturers must take responsibility and not leave it up to end users. There is also a role of industry standards however no clear set of standards have yet been agreed. So although 2016 is the Year of IoT, with this being the single biggest category of product shipped, it is still very early days where things like IoT Security and IoT Interoperability are concerned.

IoT Security versus Software Security

This is not a new dilemma. Software Security is always important and it becomes increasingly important as Internet Communicating IoT Devices become more widespread. One apparent assumption underlying all this is that an IoT Device must be a fully IP Stack capable platform. That is not necessarily the case. In the video I shared about our Water Metering Remote Telemetry project one thing I didn’t mention is that the data stream is all driven from the IoT Device. There is nothing to log into. You can’t patch it with a Windows, Linux or other OS patch to override its function. It is not capable of being used in a DDoS attack because you can’t get to anything in it that can do that. So it is inherently secure against that form of risk.

Internet of Things Cconnectivity

Internet of Things Connectivity

However there are other risks. Nick Hunn has an insightful piece on Wireless Security for IoT where he argues that we are declaring security is present while having no evidence of proving it. That article is a little dated but the basic tenets still seem to apply. Just because a manufacturer or industry alliance states they have addressed security, it doesn’t make it automatically true.

So IoT Security is Software Security with the added component of protecting the physical hardware.

IoT Security in the Future

We still don’t have standards, so for now, individual device manufacturers and alliance members will need to ensure they have adequate security out of the box. The level of security required is determined by the importance of the data, either its security against unauthorised access, or its integrity against falsification. And at the asset level, its proof against either being disabled or used as an attack vector.

As an example, I am personally not so concerned if a hacker can find out how much electricity use my smart meter is reporting. Unless they get time of day usage and can correlate with other data sources to work out in advance when we aren’t home so they can rob us. My energy provider probably cares more about this data for all its customers coming into a competitors hands. Or maybe not. But I do care that I don’t get an outrageous bill because they were able to send fake data for my account to a server.

And energy grid managers care about usage data and Smart Meter appliance management being used to crash an entire electricity grid!

In the case of the Water Metering Remote Telemetry project I care that it remains online and working because otherwise someone will have to travel a long way to fix it. We have a facility in Gilgandra that is 892Km away as the crow flies. It will take a full day to get there and then another to back again. So I want it to be proof against some hacker disabling its communication ability. Since it has a physical antenna, I do care about that being hard to break. So some of these devices are put above normal reach and everything is inside a secure plastic case including the antenna. And our customer wants to know the reported water usage is correct. This means no missing data, and no incorrect data. They use the data to bill their customers.

One simple way to mess up data is a Replay Attack. If you can intercept and copy a data transmission, then you can play back that transmission any time you want to. You don’t even have to understand the content, the encryption, anything. Simply capture a HTTP POST or GET and replay it. Why does this matter? Because if the data transmitted is the volume of water used since the last report, then every time you play it back, you add to someone’s water bill. Or you distort the level of water the system believes is in a tank or reservoir. You can protect against these attacks in a number of ways but you have to consider the need to protect against them first of all.

There is a large volume of material on this topic. Here are some additional articles you might find useful for broadening your perspective on this topic:

I’m sure you won’t find it hard to search out a lot more articles. Just consider this. Once it has an Internet connection, any device can access anywhere in the world. And most firewalls protect against incoming attacks. A corrupted device on the inside can get out any time it wants to.

Internet of Things Global Reach

Internet of Things Global Reach

And if you want a really interesting view of what this could be like 10 years from now, I recommend reading Rainbow’s End by Vernor Vinge. Enjoy. And this isn’t my first reference to this book because I think it is fairly prescient in its exploration of a most probable future.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

DSLR or Digital Single Lens Reflex Camera

Ignoring the play on words, the light camera is a major breakthrough in the use of multiple optical viewpoint cameras to create synthetic images that can be taken with something the size of a smart phone and rivals DSLR Camera photographs.

And spoiler alert, I’m getting one as soon as I can. Read on to find out why.

I enjoy photography and appreciate the balance between the size and convenience of my phone camera and the control and quality of image possible in my DSLR (Digital Single Lens Reflex) camera.

Lets look at how a DSLR camera works. This image is by en:User:Cburnett – Own work with Inkscape based on Image:Slr-cross-section.png, CC BY-SA 3.0, Link.

Single Lens Reflex Camera Cross Section

SLR Camera Cross Section

The photographer can see the subject before taking an image by the mirror. When taking an image the mirror will swing up and light will go to the sensor instead.

  1. Camera lens
  2. Reflex mirror
  3. Focal-plane shutter
  4. Image sensor
  5. Matte focusing screen
  6. Condenser lens
  7. Pentaprism/pentamirror
  8. Viewfinder eyepiece

For a Film SLR camera the sensor is the film. For the DSLR Camera the sensor is a digital image sensor CCD or Charge Coupled Device. These cameras use precision ground lenses and are capable of high levels of control and image quality. They also don’t fit in your pocket unless you have a very large one.

The Light Camera

Light - a new camera concept

Light – a new camera concept

I am very grateful to Dr Rajiv Laroia who co-founded Light. Not only has he developed a breakthrough concept in portable digital photography, but he has been very open about how he went about it and how it works. This is an excellent example of the new Collaboration landscape we now work in. He took his idea to experts to validate it rather than hiding it and hoping no-one would steal it.

IEEE Spectrum have a very detailed article Inside the Development of Light which outlines the whole journey. There are several stand out points here:

  • he solved a problem he had – it represented a practical need he understood
  • he got expert advice early
  • it required a significant shift from the best of breed technology in place now
  • he knows his first version is just that
  • there is a long term product strategy in place
  • he is teaching the world how to do it so that he has first mover advantage rather than a monopoly

The last point is interesting for me. The days of monopolies are coming to an end. The days where a Brand could overcome deficiencies in an offering aren’t yet over but they are fading. Today you can source reviews from peers and industry forums and a Brand can’t as easily dominate a market just by reputation or marketing blurb. The products have to be as good as the Brand claims they are.

Dr Rajiv Laroia - cofounder of Light

Dr Rajiv Laroia – co-founder of Light

So back to Light. Dr Rajiv Laroia has started something we will all benefit from. The concept is brilliant and the results and funding are in place to make is commercially successful.

Will we see it in a smart phone soon?  I can see cut down versions of this concept being deployable in the very near future. The processing power is the challenge in a low power hand held device that is also doing cellular communications. So battery life versus quick availability of the finished pictures is the trade-off right now.

Is it doable in the long run? Absolutely!

Light in Action

Here are some videos covering the development journey, the first commercial version and the use of the camera.

 



Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Mechanisms

Mechanisms are important in many aspects of modern life. They adjust the focus on your smart phone camera, put the wheels down when a plane is coming in to land, allows automobiles, trains, trucks and ships to move and even allow probes to roam about on the surface of Mars.

So I was very surprised to learn that a newly developed rotary gear mechanism, or transmission,  is the first major new gear design since 1957!

Abacus Gears

Lets cut straight to the chase and I’ll then back fill details later on.

Abacus Gear Mechanism

Abacus Gear Mechanism

The Abacus Gear Mechanism uses a series of rolling elements that move through a series of shaped channels that changes the rolling radius as the mechanism rotates. The results is a gear ratio between the inner driving hub and the out rotating hub. Sound complicated?

I guess this is why it has taken over 60 years to come up with the revolution. However there are some serious pluses. The contact points are all pure rolling elements unlike conventional gear teeth where some sliding motion (causing to wear) is involved. This should lead to improved gear life. It also has no backlash. This is ideal for robotics where backlash (the loss of motion when changing rotational direction on a gear due to clearances) is a big problem for keeping a precise knowledge of the position of the object under motion (a pickup arm for instance). And the rolling elements and the channels they roll in can be adjusted in shape. So although the first version, named “Abacus” because the shape of the rolling elements resembled the beads on an Abacus, had one shape of rolling element, the invention is not limited to that and the elements could be spheres.

And all of the above leads to another major benefit. It is significantly more efficient than the Harmonic Drive which was invented in 1957 and is the leading contended for robotics gears today.

There is a detailed article including a video on IEEE Spectrum at Abacus – First New Rotary Transmission in 50 Years.

The Harmonic Drive

Here is an animation of the Harmonic Drive.

Harmonic Drive

Harmonic Drive in motion

This is pretty cool as a drive concept and also has no backlash.

Mechanical Gear Fundamentals

If you to know a little more about gears and the wide variety of uses they are put to, check out this video.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Next Page »