Successful Endeavours - Electronics Designs That Work!

Transport


Electric Vehicles

A lot of focus is going into Hybrid and All Electric Cars. Tesla being the most well known example though there are many other successful players in this market. However the Electric Aircraft or Electric Plane or E-Plane is moving along a bit slower.

E-Planes

At its core, the E-Plane is a harder design challenge. You have to address a lot of different issues at once and many are in direct contradiction with each other. A short list of top competing requirements is:

  • weight versus range versus battery size
  • safety
  • cost
  • compliance and regulation

So lets look at some examples of how it is going.

Siemen’s EFusion.


EADS E-Fan

Randall Fishman’s Electric-Powered Ultralight

Elektra One – D-MELN


LH-10 Ellipse


Airbus E fan


EnerDel


Pioneer Commercial Electric Plane: Yuneec E-430

And the latest kid on the block, SunFlyer.

So this looks like it still has a fair was to go before large scale commercial adoption is possible. However we have definitely reached the point where short range and ultralight E-Planes are both technically and financially ready for market.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Electric Vehicles

This is a post I started 6 years ago and decided not to publish. Since then things have changed a lot so here goes.

The History of Electric Vehicles

The Electric Vehicle has been around for a long time. The new push to Electric Vehicles is mostly being pushed by the belief that they will reduce carbon emissions. This really depends on where the power comes from, how efficient the motors are and how well the batteries work. Most studies prior to 2011 have shown that unless a substantial amount of the power comes from renewable energy then it is likely the Electric Vehicle will generate more pollution than a petrol vehicle.

Electric Vehicles began a long time before the petrol vehicle was the norm and even way before Vanguard made the first mass produced Electric Vehicle in the 1970s.

Vanguard-Sebring Electric Vehicle

Vanguard-Sebring Electric Vehicle

 

Although details vary, 1828 is generally regarded as the date of the First Electric Vehicle and Anyos Jedlik put together a small scale model decades before the modern combusion engine cycle was invented. And the challenge was the same then as it is now, the battery. The History of Electric Vehicles is also the History of the Battery.

Jedlik Electric Car

Jedlik Electric Car

So what happened to the Electric Vehicle?  The challenge today is still the same, the Battery. We really need a better solution. Which is where my original post stopped.

Guess what? It seems to have happened.

Tesla et al

So enter Elon Musk and Tesla Motors. His purpose is to take petrol off the road so they have done some pretty innovative things including opening up their patent database so anyone can use their technology with their permission.

Tesla

Tesla

And of course Nissan, Toyota, Honda and many others are putting Electric Vehicles front a center in their product lines now.

With improvements in energy density storage and reducing costs for high capacity batteries we are approaching a time when Battery Electric Vehicles are the better choice for the environment, even when charged with electricity derived from fossil fuels. Studies show that there are more Emissions from the manufacture of a Electric Vehicle, but this is made up for in 1 year of operating emissions improvements and over the course of the Electric Vehicle’s life, Global Warming Emissions are halved. This assumes a 50mpg (US based study) petrol vehicle is used for the comparison. This equates to 21.3Kpl or 4.7L/100Km so this is as realistic comparison with a high efficiency petrol or diesel vehicle.

What a big different 6 years makes.

Hydrogen Fuel Cell Cars

So how are Hydrogen Fuel Cell based cars progressing? Calculations are that it will be roughly 3 times less efficient that a Battery Electric Vehicle. And extracting the H2 also requires energy. So H2 is an energy storage source. It is hard to store and manage and so the infrastructure costs are also high. So it is hard to do. The plus is that you don’t consume any fossil fuels in the process if you use some of the new solar based extraction mechanisms so although there are big drawbacks, there are also big benefits. The following video covers the territory well including some commentary from Elon Musk toward the end.

Let’s look at another perspective which is more optimistic.

So the infrastructure just isn’t there. So it looks like Battery Electric Vehicles are still the way to go. But the advantages are big enough that the debate will continue. And it is interesting that we have multiple fuel types in use simultaneously including Petrol (gasoline), Diesel, LPG, Alcohol, Battery Electric, Hydrogen, Biodiesel, compressed air, coal, wood and others.

The big advantages for Hydrogen are:

  • longer operating range than battery alone but not as much as petrol/diesel/LPG
  • no harmful emissions when running, the same as Battery Electric Vehicles and a big improvement over petrol/diesel/LPG

Time will tell. I should put a diary entry into my calendar for 6 years time and do another comparison.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Smart Cities

Smart City is a blending of current and emerging technologies being employed to allow a city to better manage its assets and deliver value to its residents. It is an emerging concept and still very much in exploration. The 2 core technology areas being investigated as the primary value creators are ICT (Information and Communications Technology) and the IoT (Internet of Things).

Smart City

Smart City

What isn’t fully understood is the relationships between any or all of the list below:

  • what is worth measuring?
  • how to measure it (what sensor, what platform)?
  • how often?
  • in what detail?
  • to learn what from?
  • how quickly to transport the reading?
  • how much will it cost to transport the data?
  • via what technologies?
  • stored how?
  • accessed how?
  • analysed how?

Quite a big list.

Did you know there is a Smart Cities Plan for Australia? I only recently found out. And if you read through it there are more questions than answers. Which I think is the right balance given where we are positioned in trying to understand what is possible versus what is useful.

Smart Cities Plan

Smart Cities Plan

There are some obvious areas already being tackled by ICT systems. These include:

  • transport logistics (road, rail, freight, air, sea)
  • public transport
  • utility services (gas, water, electricity, waste)
  • weather prediction
  • environmental monitoring

And there are a range of trials underway to try and understand what using a broader sensor mix and more widely deployed sensors might do to improve amenity, even if they aren’t all very high quality sensors. Again the questions come back to:

  • what sensors?
  • how many and where?
  • how accurate?
  • how much do they and their platform cost?
  • measured how often?
  • at what latency?
  • what to do with the data?
Smart Cities Segments

Smart Cities Segments

IoT Challenges

Although the Internet of Things (IoT) has a huge promise to live up to, there is a still a lot of confusion over how to go about it. This breaks up into 3 distinct areas.

IoT Hardware

The first is the IoT Hardware device that is deployed to the field. These come in a wide range of shapes, sizes, power profiles and capabilities. So we are seeing everything from full computing platform devices (Windows, Linux, Other) deployed as well as tiny resource constrained platforms such as Sensor Node devices. Examples of the later are Wimoto Motes and our own FLEXIO Telemetry devices which are OS-less Sensor Nodes.

The trade offs are between:

  • power consumption
  • power supply
  • always online versus post on a schedule or by exception
  • cost (device, data, installation, maintenance)
  • size
  • open standard versus proprietary
  • upgrade capable (over the air OTA firmware or software capability)
  • security

As of a month ago, the KPMG IoT Innovation Network reported there are 450 different IoT platforms available. And most don’t talk to each other. Many lock you in. Many only work with their specific hardware. So picking a hardware platform is only part of the challenge. And new products appear every week.

IoT Innovation Network

IoT Innovation Network

IoT Communications

The second area of challenge is the communications. Everyone is trying to get away from Cellular IoT Communications because the Telecommunications Companies pricing model has traditionally been higher than they want to pay, and because the power required means you need a much higher power budget. So there has been a push to find other options which has opened the way for players like LoRa and sigfox.

However the CAT-M1 and NB-IoT Telecommunications Standards mean that the pendulum could easily go back the other way. CAT-M1 reduces the data rate (no streaming video needed for most IoT devices) and changes the modulation scheme so you get a better range at a much lower power consumption. And unlike sigfox, you aren’t severely constrained on how much data you can move or how often. CAT-M1 has just gone live in Australia on the Telstra network and we are about to do our first trials.

Quectel BG96 CAT-M1 Module

Quectel BG96 CAT-M1 Module

NB-IoT doesn’t yet have an official availability date but we aren’t too concerned about that. NB-IoT is really aimed at the smart meter market and similar devices which have low amounts of data and upload it infrequently. So a water meter running off battery for 10+ years is an example of what it is targeting. We will find CAT-M1 a lot more useful. And the modules that support CAT-M1 currently also support NB-IoT so we are designing now and can make the decision later.

IoT Back End

The third area of challenge is the back end. Pick the wrong data service and storage provider and you could find you don’t own your own data and you have to pay every time you want a report on it. And you can’t get at it to port it to another system. And if the volume of data grows the cost can grow even faster as many offer a low entry point but the pricing get expensive quickly once you exceed the first threshold.

Because of this there is an strongly emerging preference for open systems or for systems that do allow you to push and pull data as it suits you.

So our strategy to date has been to provide our own intermediate web service and then republish the data in the required format to suit the end user / client. The result is the best of both worlds. We can deploy resource constrained field devices which are low power and low cost, then communicate with high security and high cost platforms using the intermediate service to do the heavy lifting. And we don’t try and imprison the data and trap the client.

The service is called Telemetry Host and was a finalist for IT Application of the Year in Australia in 2015 at the Endeavour Awards. And again for the PACE Zenith Awards in both 2015 and 2016.

Telemetry Host

Telemetry Host

This isn’t the only approach and so we also create devices and incorporate protocols that allow them to directly connect to other systems. This includes porting our core IP to other URLs which are then owned by our clients. So far we haven’t found that one single approach suits every scenario.

Smart City

You can’t be smart if you don’t know anything. And this is certainly true for Smart Cities. To be a Smart City requires Sensors and Telemetry. But the jury is still out on how much and what kind.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.