Successful Endeavours - Electronics Designs That Work!

Technology


Smart Cities

This follows on from our look at Smart Cities and the technology mix being considered for how you implement them. For this post we will look at the development of a Smart City Telemetry sensor suite and the ICT communications that go with it. This is also a classic IoT case study.

I also want to point out that a Smart World will only happen if we have Smart Regions, Smart Countries, Smart States or Territories, Smart Cities and Smart Neighbourhoods.

arcHUB

My thanks go to The Active Reactor Company for giving me permission to share their story about the development of the arcHUB Telemetry sensor suite which is aimed at the Smart Cities programs as well as being more widely deployable.

arcHub Telemetry Module

arcHub Telemetry Module Logo

A few days ago I had the opportunity to speak with Daniel Mulino who is the State Member for Eastern Victoria. The picture below comes from his visit to our office in Narre Warren. The original post he made along with my explanation is here. I’m giving a more detailed explanation below including some history.

Ray Keefe - arcHUB - Daniel Mulino

Ray Keefe – arcHUB – Daniel Mulino

For those wondering about the device I am holding, it is an arcHUB Smart Cities Telemetry module aimed at Smart Cities projects and environmental monitoring where you don’t have access to, or want the cost of, connecting up mains power. This is designed for The Active Reactor Company and is already involved in 1 Smart Cities deployment and multiple trials of low cost sensor modules by councils and government agencies in 3 states. I can’t yet provide specific details on those as they are covered by non-disclosure agreements.

To understand how we got here, it helps to know the history.

The Active Reactor Company make a product called The Active Reactor. It improves both the efficiency and the life of arc lamps such as low pressure sodium street lights, high pressure Sodium  and metal halide lamps.

The Active Reactor

The Active Reactor

With the advent of LED street lighting their current product is not needed for new installations and so they wanted to secure the future of the business. So a great example of addressing an issue that will arise in the future so you are ready for it rather than just reacting to it once it happens.

Initially the new product was aimed at monitoring LED street lights. One of the big issues with LED lighting is that the LEDs either fail over time or they fade and lose brightness. Or a mixture of both. The fading is a result thermal diffusion in the semiconductor substrate. When they fall by more than 30% then you have to address that as they no longer comply with legal standards for lighting levels. The other catch is that the claimed life of 10+ years isn’t yet proven and so it is expected that there will be many lights that fail early or fade early or both.

Of course, once you have a communicating device that can monitor one thing and report it, it can also monitor other things and report them as well. Plus there were issues with being allowed to monitor the light. And where would the power come? Their inquiries with authorities responsible for the poles would not give permission to tap the power in the pole or light.

So this set us the follow set of constraints to work within:

  • must be battery operated
  • easy to install
  • low cost to make and also run
  • communicate using the cheapest data transport
  • monitor the LED light at night and keep track of the brightness trend
  • send an alert when it is persistently out of specification
  • field life to match the street light (10+ years)

As The Active Reactor Company talked to target users (initially the same people who buy their current product) and got an idea of what they wanted, a very different picture emerged. The people who cared about LED street lighting, also cared about micro climates, and soil moisture levels, and air quality, and foot traffic, and …

So that lead to a change of direction and a look at what else was required. The result is a device aimed at the Smart Cities market that also suits a wide range of other end customers and has the following features you won’t find combined together in conventional devices:

  • battery operated (either solar charged or primary cells)
  • minimum 2 year battery life for standard AA cell alkaline batteries
  • 10+ day running time if solar charging is lost
  • up to 20 days on board non-volatile storage
  • compact form factor
  • multiple sensor types per node (up to 20)
  • sensor area network to minimise data costs
  • over the air firmware upgrades
  • over the air configuration updates
  • variable sample rates and upload timing
  • still has to be low cost to make and also run
  • easy to install

So here is the range of sensors already trialed:

  • wind speed (external anemometer attached)
  • sunlight level
  • night light level (street light monitoring etc)
  • temperature
  • PM2.5 particulate levels
  • PM10 particulate levels
  • Gasses – CO, H2S, SO2, NO2, H2S
  • Humidity
  • People counting (PIR based anonymous counting)
  • Soil moisture levels (external probe)

It is also the HUB and coordinator of a Sensor Area Network that can include modules that can measure any of the above as well as:

  • vibration
  • shock
  • movement
  • water level
  • GPS location
  • USB charger current (for usage analysis)
  • counting any device or system that has a pulse output
  • analog voltage measurements (AC and DC)
arcHUB trial at Fitzroy Gardens

arcHUB trial at Fitzroy Gardens

The arcHUB is solar powered and includes a cellular modem to allow reporting back to a web service. It is designed to mount to a pole using straps but can easily be mounted to a wall or any other typical structure. A typical scenario is measurements every 15 minutes (except people or pulse counting which are continuous) and uploading to the web service every hour.

With the release of CAT-M1 services across Australia by Telstra, we are expecting migrate to this communications standard because it will reduce power consumption by at least a factor of 4 which will further improve battery life.

Quectel BG96 CAT-M1 Module

Quectel BG96 CAT-M1 Module

The arcHUB Peripheral Modules connect via 915MHz ISM Band communications and use standard AA batteries. They can run for between 2 and 5 years depending on what sensors are attached and how often they are read and reported. If you used primary lithium cells then you can expect life beyond 10 years.

The arcHUB Peripheral Modules are also capable of stand alone operation with the addition of an internally fitted cellular modem so you can have a portable people counter module that can be easily moved to a new location and doesn’t require an electrician to install it.

And pretty exciting to also announce that this is not only a designed in Australia product range, but it is also a made in Australia product range.

Again, my thanks to The Active Reactor Company for permission to share this story and if you want to know more, leave a comment and I will put you in touch with them.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Smart Cities

Smart City is a blending of current and emerging technologies being employed to allow a city to better manage its assets and deliver value to its residents. It is an emerging concept and still very much in exploration. The 2 core technology areas being investigated as the primary value creators are ICT (Information and Communications Technology) and the IoT (Internet of Things).

Smart City

Smart City

What isn’t fully understood is the relationships between any or all of the list below:

  • what is worth measuring?
  • how to measure it (what sensor, what platform)?
  • how often?
  • in what detail?
  • to learn what from?
  • how quickly to transport the reading?
  • how much will it cost to transport the data?
  • via what technologies?
  • stored how?
  • accessed how?
  • analysed how?

Quite a big list.

Did you know there is a Smart Cities Plan for Australia? I only recently found out. And if you read through it there are more questions than answers. Which I think is the right balance given where we are positioned in trying to understand what is possible versus what is useful.

Smart Cities Plan

Smart Cities Plan

There are some obvious areas already being tackled by ICT systems. These include:

  • transport logistics (road, rail, freight, air, sea)
  • public transport
  • utility services (gas, water, electricity, waste)
  • weather prediction
  • environmental monitoring

And there are a range of trials underway to try and understand what using a broader sensor mix and more widely deployed sensors might do to improve amenity, even if they aren’t all very high quality sensors. Again the questions come back to:

  • what sensors?
  • how many and where?
  • how accurate?
  • how much do they and their platform cost?
  • measured how often?
  • at what latency?
  • what to do with the data?
Smart Cities Segments

Smart Cities Segments

IoT Challenges

Although the Internet of Things (IoT) has a huge promise to live up to, there is a still a lot of confusion over how to go about it. This breaks up into 3 distinct areas.

IoT Hardware

The first is the IoT Hardware device that is deployed to the field. These come in a wide range of shapes, sizes, power profiles and capabilities. So we are seeing everything from full computing platform devices (Windows, Linux, Other) deployed as well as tiny resource constrained platforms such as Sensor Node devices. Examples of the later are Wimoto Motes and our own FLEXIO Telemetry devices which are OS-less Sensor Nodes.

The trade offs are between:

  • power consumption
  • power supply
  • always online versus post on a schedule or by exception
  • cost (device, data, installation, maintenance)
  • size
  • open standard versus proprietary
  • upgrade capable (over the air OTA firmware or software capability)
  • security

As of a month ago, the KPMG IoT Innovation Network reported there are 450 different IoT platforms available. And most don’t talk to each other. Many lock you in. Many only work with their specific hardware. So picking a hardware platform is only part of the challenge. And new products appear every week.

IoT Innovation Network

IoT Innovation Network

IoT Communications

The second area of challenge is the communications. Everyone is trying to get away from Cellular IoT Communications because the Telecommunications Companies pricing model has traditionally been higher than they want to pay, and because the power required means you need a much higher power budget. So there has been a push to find other options which has opened the way for players like LoRa and sigfox.

However the CAT-M1 and NB-IoT Telecommunications Standards mean that the pendulum could easily go back the other way. CAT-M1 reduces the data rate (no streaming video needed for most IoT devices) and changes the modulation scheme so you get a better range at a much lower power consumption. And unlike sigfox, you aren’t severely constrained on how much data you can move or how often. CAT-M1 has just gone live in Australia on the Telstra network and we are about to do our first trials.

Quectel BG96 CAT-M1 Module

Quectel BG96 CAT-M1 Module

NB-IoT doesn’t yet have an official availability date but we aren’t too concerned about that. NB-IoT is really aimed at the smart meter market and similar devices which have low amounts of data and upload it infrequently. So a water meter running off battery for 10+ years is an example of what it is targeting. We will find CAT-M1 a lot more useful. And the modules that support CAT-M1 currently also support NB-IoT so we are designing now and can make the decision later.

IoT Back End

The third area of challenge is the back end. Pick the wrong data service and storage provider and you could find you don’t own your own data and you have to pay every time you want a report on it. And you can’t get at it to port it to another system. And if the volume of data grows the cost can grow even faster as many offer a low entry point but the pricing get expensive quickly once you exceed the first threshold.

Because of this there is an strongly emerging preference for open systems or for systems that do allow you to push and pull data as it suits you.

So our strategy to date has been to provide our own intermediate web service and then republish the data in the required format to suit the end user / client. The result is the best of both worlds. We can deploy resource constrained field devices which are low power and low cost, then communicate with high security and high cost platforms using the intermediate service to do the heavy lifting. And we don’t try and imprison the data and trap the client.

The service is called Telemetry Host and was a finalist for IT Application of the Year in Australia in 2015 at the Endeavour Awards. And again for the PACE Zenith Awards in both 2015 and 2016.

Telemetry Host

Telemetry Host

This isn’t the only approach and so we also create devices and incorporate protocols that allow them to directly connect to other systems. This includes porting our core IP to other URLs which are then owned by our clients. So far we haven’t found that one single approach suits every scenario.

Smart City

You can’t be smart if you don’t know anything. And this is certainly true for Smart Cities. To be a Smart City requires Sensors and Telemetry. But the jury is still out on how much and what kind.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

 

Quantum Mechanics

By definition, Quantum Mechanics acts at such tiny dimensions below what we can visualise. And the Uncertainty Principle by Werner Heisenberg makes it clear that we can’t know where things are and how much energy they have at the same time. So how can we visualise any of this except as a simulation?

Check this out:

My thanks to Derek Muller of Veritasium for this video.

Derek Muller

Derek Muller

And it raises the issue of whether the Copenhagen Interpretation or the Pilot Wave theory is the best explanation for Quantum Mechanics. There is still so much about the universe we are still trying to figure out. Which means a lot of discovery and breakthroughs are still to happen. Exciting times remain ahead.

My thanks to Andrew Walla for bringing this to my attention.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Top Programming Languages

Each of the past 3 years IEEE Spectrum have conducted a survey of the Top Programming Languages. This year they have done it again and the results are in. The overall winner is Python with C taking out the Embedded Software category.

Here is the overall list covering all development platforms considered.

Top Programming Languages 2017

Top Programming Languages 2017

So Python is the winner and for the first time. It’s continued rise in usage is a testimony to the usefulness of the language and the ecosystem that sits around it. But the top 4, Python, C, Java and C++ are a long way ahead of the rest overall.

Top Embedded Programming Languages

And for Embedded Software development we have.

Top Embedded Programming Languages 2017

Top Embedded Programming Languages 2017

There has been some discussion around whether Arduino is a Language since it is a platform with a development tool set built around C and some libraries. But this is a compilation of responses from software development practitioners and so they obviously think it is.

The surprise for me is Haskell. Functional Programming is still in its infancy and there is a lot we don’t fully get about it so I was surprised to see it ranking so highly. What would be really useful is to also get an understanding of what types of problems/solutions/applications the programming was being applied to rather than just the language the solution was implemented in.

Of interest is the correlation with the languages we use here at Successful Endeavours. Here is our short list:

  • C
  • C++
  • Python
  • PHP
  • Perl
  • VHDL
  • Assembly
  • HTML
  • Arduino

The previous results can be found in

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Nanosheets Enable 5nm Transistor Technology

It was less than a year ago that we covered Nanowires Enable FinFET Successor which looked at the use of Nanowires to create transistors and improve on FinFET technology which had become the primary transistor construction technology for complex semiconductors. This was using 8nm Nanowires and was expected to be the next generation of transistor technology.

Now IBM have announced a new breakthrough using Nanosheets to create 5nm transistors. And this is likely to completely take over the role that Nanowires were expected to fulfill. Here is how they did it.

The primary breakthrough is to take the vertical fins of the FinFET and turn them into horizontal Nanosheets as shown below.

5nm stacked Nanosheet transistor structure

5nm stacked Nanosheet transistor structure

And a photograph looks like this.

Nanosheet Transistor

Nanosheet Transistor

For a more complete description of the technology, this video covers some of the details on why this will lead to a scalable production process.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Holograms

Holograms are the product of Holography. This sounds rather self referencing. You can think of this as recording light the way you record sound. So you can have monophonic sound or full surround sound. A 3D Hologram allows you to see the original object from different directions as you move around it even though it is no longer present.

We have all seen futuristic movies where a 3D rendering of someone appears as if it was the person really there. And this is one of the goals of 3D Holograms. So it is exciting to see some breakthroughs in this area being pioneered in Australia at RMIT University.

This is also a good example of collaboration, something we don’t see enough of in Australia.

You can read the full story at World’s Thinnest Hologram Promises 3D Images on Our Mobile Phones.

3D Hologram

3D Hologram

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Putting Light to Work

Light is a really interesting thing. It has so many different aspects. And it took us a long time to work out exactly how it functioned. And in many ways that is still an ongoing process. So this post is a brief survey of some recent advances in our understanding of light, how to use it, and how to generate it.

Extracting Energy from Light

Recent advances in Quantum Dots have taken us one step closer to improving our extracting of energy from light and Solar Cells continue to improve.

Quantum Dot Solar Energy Conversion from Windows

New record for Solar Cell efficiency

Interactive chart of Solar Cell technologies and inefficiencies

The chart below is from the link above and shows that the fastest improving Solar Cell technologies (the 2 steepest red lines) are Perovskite Solar Cells and Quantum Dot Solar Cells. Click to get a larger version. Or go to the interactive link where you can get more detail for each dot.

Solar Cell Efficiencies - By Time And Technology

Solar Cell Efficiencies – By Time And Technology

And for a good summary of PV (PhotoVoltaic) technologies the link below provides a useful guide.

What makes a good PV Technology

So apart from turning the light in electricity, what else can we do with light?

Light for Communication

Light is also useful as a communications tool. And recent advances in Quatum Dot management of light means it could hold the key to higher levels of computing power in the future, as well as more secure communications.

Quantum Dots set speed record for switching

Phototonic Hypercrystals improve light control

Photonic Hypercrystals

Photonic Hypercrystals

Saucer Shaped Quantum Dots improve LASER brightness

2 steps closer to a Quantum Internet

The last link is particularly interesting because it involved entangling photons at a distance. And the first experiments have already been successful.

Quatum Entangled Photon Communications

Quantum Entangled Photon Communications

But is there more?

Other uses of light

As it happens, yes there is.

Nanoscale structure purifies water using light

Artificial Photosynthesis extracts CO2

So this remains a very busy space.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Printed Electronics

Way back in 2011 we looked at the state of Printed Electronics and concluded this was a rapidly emerging area of Technology and had been since the previous look at The Future of Low Cost Electronics Manufacture in 2009. It has been a while so what has happened since then?

Printed Electronics

Printed Electronics

This is another guest post by Andrew Walla.

Andrew Walla

Andrew Walla

Printed Electronics Overview

Rapid prototyping, also referred to as 3D printing or additive manufacturing is the process of building objects or devices by building up layer by layer [1]. It has been identified as a potentially disruptive technology in the manufacturing industry in the coming years and is particularly well suited to provide benefits to technologies that operate on smaller scales of production [2]. New manufacturing paradigms, such as direct manufacturing (directly printing the sold goods) and home manufacturing (providing the capability for consumers to produce parts themselves) are set to change the way that small manufacturing businesses operate and significantly increase the level of competition in the industry [3].

This post will discuss the manufacturing technique of printing – a technology whose origins date back more than five centuries [4] and in this time a number of different printing methods have been developed. Successive layers are generally printed onto a substrate either by direct contact; via an impression cylinder (such as in flexographic, graviture or offset printing), deposited via a stencil (screen printing); or directly deposited onto the substrate (for example, inkjet printing, aerosol-jet printing or organic vapor-jet printing). Of these technologies, inkjet printing is particularly well suited to rapid prototyping and low volume manufacturing due to its high customisability, relatively high resolution and relatively low set-up cost [1].

Inkjet printed electronics differs to conventional inkjet printing in that the deposited substances need to exhibit desired electronic behaviours. A common method to achieve this is to intersperse the ink (a solvent) with nano-particles (small particles with controlled sizes, typically in the order of nano-meters) with desired conductive, dielectric or semiconducting characteristics. The printed substance might be treated post printing in order to evaporate the solvent and/or facilitate a chemical change in the nano-particles. Examples of such treatment include thermal curing [5], curing by ultraviolet light [6], laser sintering [7], e-beam sintering [8], chemical sintering [9] or plasma sintering [10].

Current research efforts are focusing on improving the printing and post-processing technologies available [10-12], improved interconnects [13] and vias [14], improved semiconductors, and printing under less stringent conditions. Examples include printing conductors at room temperature [6] and printing elements such as transistors [15] and diodes [16] with ever increasing performance characteristics. It is forecast that these improvements will continue for some time, as the fastest known inkjet printed transistor has an operating speed of around 20MHz [17-18]. (This is several orders of magnitude behind the capability of existing silicon chip technology.) Researchers are also working on developing transistor characteristics other than maximum frequency. For example, inkjet printing technology has been used to produce flexible and transparent transistors [19].

For those looking to predict where printed electronics will have the greatest future impact, it may pay to think outside the box. In the authour’s opinion, inkjet printing technology is likely to play a larger role in enabling new applications than it is to replace existing electronic technology. It is unlikely that a device with the functionality of a smartphone will be printed anytime soon, but perhaps the capability of printing your own solar panels is closer than you think.

[1] N. Saengchairat, T. Tran and C.-K. Chua, “A review: additive manufacturing for active electronic components,” Virtual and Physical Prototyping, vol. 12, no. 1, pp. 31-46, 2017.
[2] A. O. Laplume, B. Petersen and J. M. Pearce, “Global value chains from a 3D printing perspective,” Journal of International Business Studies, vol. 47, pp. 595-609, 2016.
[3] T. Rayna and L. Striukova, “From rapid prototyping to home fabrication: How 3D printing is changing business model innovation,” Technological Forecasting & Social Change, vol. 102, pp. 214-224, 2016.
[4] S. H. Steinberg, Five hundred years of printing, Maryland: Courier Dover Publications, 2017.
[5] N. Graddage, T.-Y. Chu, H. Ding, C. Py, A. Dadvand and Y. Tao, “Inkjet printed thin and uniform dielectrics for capacitors and organic thin film transistors enabled by the coffee ring effect,” Organic Electronics, vol. 29, pp. 114-119, 2016.
[6] G. McKerricher, M. Vaseem and A. Shamim, “Fully inkjet-printed microwave passive electronics,” Microsystems & Nanoengineering, vol. 3, p. 16075, 2017.
[7] S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology, vol. 18, pp. 1-8, 2007.
[8] Y. Farraj, M. Bielmann and S. Magdassi, “Inkjet printing and rapid ebeam sintering enable formation of highly conductive patterns in roll to roll process,” The Royal Society of Chemistry, vol. 7, pp. 15463-15467, 2017.
[9] S. Wunscher, R. Abbel, J. Perelaer and U. S. Schubert, “Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices,” Journal of Materials Chemistry C, pp. 10232-10261, 2014.
[10] Y.-T. Kwon, Y.-I. Lee, S. Kin, K.-J. Lee and Y.-H. Choa, “Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering,” Applied Surface Science, vol. 396, pp. 1239-1244, 2017.
[11] J.-J. Chen, G.-Q. Lin, Y. Wang, E. Sowade, R. R. Baumann and Z.-S. Feng, “Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating,” Applied Surface Science, vol. 396, pp. 202-207, 2017.
[12] H. Ning, R. Tao, Z. Fang, W. Cai, J. Chen, Y. Zhou, Z. Zhu, Z. Zeng, R. Yao, M. Xu, L. Wang, L. Lan and J. Peng, “Direct patterning of silver electrodes with 2.4 lm channel length,” Journal of Colloid and Interface Science, vol. 487, pp. 68-72, 2017.
[13] T. Ye, L. Jun, L. Kun, W. Hu, C. Ping, D. Ya-Hui, C. Zheng, L. Yun-Fei, W. Hao-Ran and D. Yu, “Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics,” Organic Electronics, vol. 41, pp. 179-185, 2017.
[14] T.-H. Yang, Z.-L. Guo, Y.-M. Fu, Y.-T. Cheng, Y.-F. Song and P.-W. Wu, “A low temperature inkjet printing and filling process for low resistive silver TSV fabrication in a SU-8 substrate,” 30th IEEE International conference in Micro Electro Mechanical Systems (MEMS), 2017.
[15] J. Roh, H. Kim, M. Park, J. Kwak and C. Lee, “Improved electron injection in all-solution-processed n-type organic field-effect transistors with an inkjet-printed ZnO electron injection layer,” Applied Surface Science, vol. 420, pp. 100-104, 2017.
[16] K. Y. Mitra, C. Sternkiker, C. Martínez-Domingo, E. Sowade, E. Ramon, J. Carrabina, H. L. Comes and R. R. Baumann, “Inkjet printed metal insulator semiconductors (MIS) diodes for organic and flexible electronic application,” Flexible and Printed Electronics, vol. 2, no. 1, p. 015003, 2017.
[17] X. Guo, Y. Xu, S. Ogier, T. N. Ng, M. Caironi, A. Perinot, L. Li, J. Zhao, W. Tang, R. A. Sporea, A. Nejim, J. Carrabina, P. Cain and F. Yan, “Current Status and Opportunities of Organic Thin-Film Transistor Technologies,” IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 1906-1921, 2017.
[18] A. Perinot, P. Kshisagar, M. A. Malfindi, P. P. Pompa, R. Fiammengo and M. Caironi, “Direct-written polymer field-effect transistors operating at 20MHz,” Scientific Reports, vol. 6, pp. 1-9, 2016.
[19] L. Basiricò, P. Cosseddu, B. Faboni and A. Bonfiglio, “Inkjet printing of transparent, flexible, organic transistors,” Thin Solid Films, vol. 520, pp. 1291-1294, 2011.

 

 

Andrew Walla, RF Engineer, Successful Endeavours

So there has been some substantial change but we aren’t yet at the point where this type of Electronics Design and Manufacture has begun to significantly disrupt the mainstream industry. But I can imagine the day when some of what I do now can be printed and tested right now on my desk instead of having to go through PCB Design, PCB Manufacture and Electronics Prototyping first. Can’t wait for Printed Electronics to become mainstream.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

 

 

Introducing Andrew Walla

This is a guest blog article from Andrew Walla who is working with us and an expert in Radio Frequency Engineering (RF), particularly focusing on small form factor Antennas. So the emphasis is on compact antennas which fits in with our recent emphasis on the Internet of Things (IoT).

Andrew Walla

Andrew Walla

A couple of other caveats. Notable omissions include the pioneering works of Faraday, Orsted and Gauss. For those wanting to dig deeper, the first wireless transmission was by Loomis in 1866, long before Hertz‘ formal experiments were published. The history of wireless television, the Internet and more complex antenna arrangements such as phased arrays has largely ignored in order to keep this brief. And like Analog Electronics , RF and Antennas are a specialised area that is not easy to understand.

And for those who would like to be able to visualize what the final paragraph below means, this animated GIF might help.

Dipole transmitting antenna

Dipole antenna transmitting

The History of Antennas

In his seminal 1864 paper [1], James Clerk Maxwell presented a set of twenty equations (condensed into a set of four vector equations by Oliver Heaviside in 1888 [2]). In this work, Maxwell predicted the existence of electromagnetic waves; a phenomenon which would later be experimentally verified by Heinrich Hertz in a series of papers published in the late 1880s [3].

Guglielmo Marconi was influenced by such findings and worked to extended the field of research; he successfully demonstrated the ability of electromagnetic waves to transmit information over large distances in 1895 and in 1901 he was the first to wirelessly transmit information across the Atlantic Ocean [4]. While Marconi’s research focussed on transmitting information in the form of Morse code, Reginald Fressenden took the challenge upon himself to utilise this technology to transmit the human voice, a challenge which he successfully conquered in 1900 [5]. In 1920, the world’s first commercial radio station began operation (although the title of ‘first commercial radio station’ is contested by many scholars on the basis of differing criteria being used to define the title). This was followed by a rapid spread in radio broadcasting throughout the world in the 1920’s and 1930’s [6, 7].

In the century to follow came television, paging, mobile telephones and wireless internet. The number of wirelessly communicating devices deployed in the world now exceeds the world population [8]. More than one billion such devices are being produced each year and the rate of production is growing [9]. All these devises have an essential element in common that enables their functionality, the antenna.

An antenna is a device to transform a guided wave (a signal inside the circuitry of an electronic device) into a radiated wave (electromagnetic radiation propagating through space). From Maxwell’s equations, we know that an alternating current will emit radiation. We also know that an electromagnetic field will induce a current in a wire. The purpose of an antenna is to act as a transducer between the wireless device and surrounding space, ensuring that the transformation between electromagnetic waves and circuit currents occurs with the desired level of efficiency [10, 11].

References below will assist with further research of this topic.
[1] J. C. Maxwell, “A Dynamical Theory of the Electromagnetic Field,” Philosophical transactions of the Royal Society of London, vol. 155, pp. 459-512, 1865.
[2] O. Heaviside, “The electro-magnet effects of a moving charge,” The Electrician, vol. 22, pp. 147-148, 1888.
[3] H. Hertz, Electric Waves, London: Macmillan, 1893.
[4] G. C. Corazza, “Marconi’s history,” Proceedings of the IEEE, vol. 86, no. 7, pp. 1307-1311, 1998.
[5] J. S. Belros, “Reginald Aubrey Fessenden and the birth of wireless telephony,” IEEE Antennas and Propagation Magazine, vol. 44, no. 2, pp. 38-47, 2002.
[6] W. J. Severin, “Commercial vs. non-commercial radio dring broadcasting’s early years,” Journal of Broadcasting & Electronic Media, vol. 22, no. 4, pp. 491-504, 1978.
[7] J. E. Baudino and J. M. Kittross, “Broadcasting’s oldest stations: An examination of four claimants,” Journal of Broadcasting & Electronic Media, vol. 21, no. 1, pp. 61-83, 1977.
[8] GSMEA Intelligence, “GMEI 2017 Global Mobile Engagement Index,” GMSA Intelligence, London, 2017.
[9] T. Nguyen, J. T. McDonald and W. B. Glisson, “Exploitation and Detection of a Malicious Mobile Application,” Proceedings of the 50th Hawaii International Conference on System Sciences, 2017.
[10] A. K. Skrivervik, J. -F. Zürcher, O. Staub and J. R. Mosig, “PCS Antenna Design: The Challenge of Miniaturization,” IEEE Antennas and Propagation Magazine, vol. 43, no. 4, pp. 12-27, 2001.
[11] S. M. Wentworth, Applied electromagnetics: early transmission lines approach, John Wiley, 2007.

Andrew Walla, RF Engineer, Successful Endeavours

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

5G for IoT

Thanks to the team at VDC Research who compile some very useful information on Embedded and IoT (Internet of Things) trends. It is free to join and the deal is that you contribute to their surveys in order to get access to some reports for free. They also do detailed reports for business purposes which are available for purchase.

VDC Research

VDC Research

The following 5G IoT Infographic was put together by them to show the progression of 5G cellular or Mobile Communications in terms of its impact in the Embedded Systems and IoT space. If you click on it you will get a cleaner version to look at and you’ll probably want to zoom in a bit.

5G IoT Infographic

5G IoT Infographic

I was interested to see that there are still no fully confirmed standards for 5G. And my previous post on Cellular IoT Communications shows this to be a trend where NB-IoT is still being ratified even though there are chip sets on the market. It is also sobering to think about where all the data will get stored as devices running Gb/sec data streams will have to be sending it somewhere. Big Data keeps getting bigger.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Next Page »