Successful Endeavours - Electronics Designs That Work!

Technology


Intellectual Property

The first step is to determine what Intellectual Property you actually have. This is usually broader than you initially think.

Intellectual Property

Intellectual Property

Intellectual Property Audit

So before you can have an Intellectual Property Strategy, you will need to do an Intellectual Property Audit or IP Audit. IP Australia has an excellent guide to how to do this at Auditing Your IP so if you haven’t done this already, I recommend you read through the guide.

IP Australia

IP Australia

An example of an IP Audit is shown at World Intellectual Property Organisation at IP Audit – A “How to” Guide. So to see an IP Audit outcome. Check that out.

World Intellectual Property Organisation

World Intellectual Property Organisation

Intellectual Property Strategy

Now you have identified your Intellectual Property using an IP Audit, you can put together your Intellectual Property Strategy or IP Strategy. How to go about this depends on a lot of factors. Some examples are:

  • US Patents have moved from priority given to “first to invent”, to priority given to “first to file”. So filing early is now critical if you want protection or even the right to deploy your own invention which predated a patent from a competitor.
  • Different domains have different rules for determining patent infringement. For instance, The EU see protecting the idea as important and not just the specific wording of the patent.
  • If you want to defend a patent, you will need to fund the defense.
  • Trademarks get more respect than patents so use trademarks.
  • Trademarks potentially have unlimited life whereas patents and registered designs have finite life.
  • But you will have many other IP Resources including Trade Secrets which also potentially have infinite life.

You also need to have “Freedom to Operate“. This means your new invention could infringe someone else’s IP Rights. So it is also necessary to check that there isn’t a Patent, Trademark or Registered Design that you would be in breach of infringing if you proceeded. And if you are, you might want to look at whether you could license the technology. A recent change in IP Law means that a Patent holder cannot be unreasonable in restraining your business opportunity, and particularly if they are not competing with you, and especially if they are primarily acquiring and sitting on patents, or patent trolling.

The general steps of an IP Strategy are:

  • Decide who in your organisation will take responsibility for IP
  • And what you will do in house, and where you will get an IP Lawyer involved
  • Do an IP Audit and identify your Intellectual Property Assets
  • Determine if you have registered all these assets
  • If not, register trademarks and designs and that you want to protect
  • Decide if and how you will monitor for infringement of your IP
  • Be prepared to retire IP that is no longer of value
  • Ensure trade secrets and confidential information is secure

My thanks to Duncan Bucknell of Think IP Strategy for providing advice on this topic.

Duncan Bucknell - Think IP Strategy

Duncan Bucknell

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Electric Vehicles

A lot of focus is going into Hybrid and All Electric Cars. Tesla being the most well known example though there are many other successful players in this market. However the Electric Aircraft or Electric Plane or E-Plane is moving along a bit slower.

E-Planes

At its core, the E-Plane is a harder design challenge. You have to address a lot of different issues at once and many are in direct contradiction with each other. A short list of top competing requirements is:

  • weight versus range versus battery size
  • safety
  • cost
  • compliance and regulation

So lets look at some examples of how it is going.

Siemen’s EFusion.


EADS E-Fan

Randall Fishman’s Electric-Powered Ultralight

Elektra One – D-MELN


LH-10 Ellipse


Airbus E fan


EnerDel


Pioneer Commercial Electric Plane: Yuneec E-430

And the latest kid on the block, SunFlyer.

So this looks like it still has a fair was to go before large scale commercial adoption is possible. However we have definitely reached the point where short range and ultralight E-Planes are both technically and financially ready for market.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Electric Vehicles

This is a post I started 6 years ago and decided not to publish. Since then things have changed a lot so here goes.

The History of Electric Vehicles

The Electric Vehicle has been around for a long time. The new push to Electric Vehicles is mostly being pushed by the belief that they will reduce carbon emissions. This really depends on where the power comes from, how efficient the motors are and how well the batteries work. Most studies prior to 2011 have shown that unless a substantial amount of the power comes from renewable energy then it is likely the Electric Vehicle will generate more pollution than a petrol vehicle.

Electric Vehicles began a long time before the petrol vehicle was the norm and even way before Vanguard made the first mass produced Electric Vehicle in the 1970s.

Vanguard-Sebring Electric Vehicle

Vanguard-Sebring Electric Vehicle

 

Although details vary, 1828 is generally regarded as the date of the First Electric Vehicle and Anyos Jedlik put together a small scale model decades before the modern combusion engine cycle was invented. And the challenge was the same then as it is now, the battery. The History of Electric Vehicles is also the History of the Battery.

Jedlik Electric Car

Jedlik Electric Car

So what happened to the Electric Vehicle?  The challenge today is still the same, the Battery. We really need a better solution. Which is where my original post stopped.

Guess what? It seems to have happened.

Tesla et al

So enter Elon Musk and Tesla Motors. His purpose is to take petrol off the road so they have done some pretty innovative things including opening up their patent database so anyone can use their technology with their permission.

Tesla

Tesla

And of course Nissan, Toyota, Honda and many others are putting Electric Vehicles front a center in their product lines now.

With improvements in energy density storage and reducing costs for high capacity batteries we are approaching a time when Battery Electric Vehicles are the better choice for the environment, even when charged with electricity derived from fossil fuels. Studies show that there are more Emissions from the manufacture of a Electric Vehicle, but this is made up for in 1 year of operating emissions improvements and over the course of the Electric Vehicle’s life, Global Warming Emissions are halved. This assumes a 50mpg (US based study) petrol vehicle is used for the comparison. This equates to 21.3Kpl or 4.7L/100Km so this is as realistic comparison with a high efficiency petrol or diesel vehicle.

What a big different 6 years makes.

Hydrogen Fuel Cell Cars

So how are Hydrogen Fuel Cell based cars progressing? Calculations are that it will be roughly 3 times less efficient that a Battery Electric Vehicle. And extracting the H2 also requires energy. So H2 is an energy storage source. It is hard to store and manage and so the infrastructure costs are also high. So it is hard to do. The plus is that you don’t consume any fossil fuels in the process if you use some of the new solar based extraction mechanisms so although there are big drawbacks, there are also big benefits. The following video covers the territory well including some commentary from Elon Musk toward the end.

Let’s look at another perspective which is more optimistic.

So the infrastructure just isn’t there. So it looks like Battery Electric Vehicles are still the way to go. But the advantages are big enough that the debate will continue. And it is interesting that we have multiple fuel types in use simultaneously including Petrol (gasoline), Diesel, LPG, Alcohol, Battery Electric, Hydrogen, Biodiesel, compressed air, coal, wood and others.

The big advantages for Hydrogen are:

  • longer operating range than battery alone but not as much as petrol/diesel/LPG
  • no harmful emissions when running, the same as Battery Electric Vehicles and a big improvement over petrol/diesel/LPG

Time will tell. I should put a diary entry into my calendar for 6 years time and do another comparison.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Satellite Internet

There are many areas of the world where Internet services are not readily accessible. One of the ideas for providing poorly services areas with Internet was g

Google’s Project Loon which used high altitude balloons.

But there are also Satellite Internet contenders. Theses were nicely covered by recent blogs at CIS 471 and I’ve picked out some essential bits of information.

Boeing

Boeing Satellite Internet Plan

Boeing Satellite Internet Plan

The image above shows Boeing‘s plans to cover the earth with 2956 satellites. You can read more at Boeing’s satellite Internet project.

SpaceX

The next company is SpaceX who are also involved in rocket and satellite design. They are looking at 4425 satellites in low earth orbit.

SpaceX Satellite Back Haul

SpaceX Satellite Back Haul

SpaceX believe that they can speed up Internet Back Haul by reducing the number of router hops required. The example above shows 5 space hops (including up and down) replacing 14 conventional hops. You can read more at SpaceX satellite Internet project status update.

OneWeb

And OneWeb are looking to provide Global Internet access, especially to the developing world.

OneWeb Transceiver Footprint

OneWeb Transceiver Footprint

They plan to use beam steerable techniques to allow frequency reuse and clean hand off as the satellites move overhead. And at seriously fast data rates. You can read more at OneWeb satellite Internet project status update.

What I found very encouraging is the degree to which BoeingSpaceX and OneWeb are collaborating and cooperating in order to make sure that they can coexist and all provide effective services. This included adjusting planned orbital heights and frequency usage.

So great to see another example of just how much Collaboration can enable opportunities, even when the collaborators look like competitors.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Doug Engelbart

There are lot’s of people who have done enormous service to the world through their inventiveness and willingness to share with other. A good example is Dennis Richie who I gave a tribute to in 2011 and who gave us the C Programming Language, one of the most used computing languages even today.

Doug Engelbart holding an early computer mouse

Doug Engelbart holding an early computer mouse

I recently came across Doug Engelbart who passed away 4 years ago and is responsible for inventing many of the ideas behind modern computing including:

  • Father of the mouse
  • Videoconferencing
  • Hyperlinks
  • WYSIWYG word processor
  • Multi-window user interface
  • Shared documents
  • Shared database
  • Documents with images & text embedded
  • Keyword search
  • Instant Messaging
  • Synchronous Collaboration
  • Asynchronous Collaboration
  • and much more

The Mother of all Demos

The Mother of all Demos was a 90 minute presentation he put together in 1968 to demonstrate, for the first time, some of the above inventions. Below is a video with selected highlights.

This was the beginning of Interactive Computing and a critical breakthrough on the way to the Graphical User Interface and eventually the WIMP (Windows, Icons, Mouse, Pointer) Operating System concepts.

You can read more about his contributions at:

The First Mouse

And now for a look at the First Mouse. This one predated the 3 button version used in the Mother of all Demos.

Again I am very grateful for those who have gone before us and shared and collaborated so freely that we might all benefit together.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Voltera V-One

The Voltera V-One is a PCB Prototyping system from voltera.io. And we just got one having put in a pre-order in April 2017. So we made the default “Hello World”project to make sure it works. And it did. Now the first serious assignment is making a single sided PCB with 8 channels of 3rd order active low pass filtering on it. Although it can do double sided PCBs there are extra steps so I started with single sided and we will run a few jumper wires to stitch the GND and VCC nets together. Everything else I was able to route fully through on the top layer. You can watch it in action below.

And this is the design it is printing. Below is the schematic for 2 of the low pass active filter channels.

Active Low Pass Filter Schematic

Active Low Pass Filter Schematic

The layout that was then converted to gerber plots (only needed the GTL top layer) and printed. You can easily see where I allowed for the jumper wires. The ones on the left are GND and on the right are VCC.

Active Low Pass Filter PCB

Active Low Pass Filter PCB

This technology is the equivalent of 3D printing for circuit boards. But wait, there is more. You can use any substrate so this can print on glass or a flexible medium such as Kapton. And it is worth noting that it is a printer and so can handle more than just conductive ink. You can also use it as a general purpose printer. It will even dispense paste on standard HASL finish production PCBs so you can do stencil free reflow of standard PCBs.

They are also working on a milling attachment and we plan on getting that as soon as it is available.

Voltera V-One Review

Here is a review put together by Andrew Walla, one of the staff here at Successful Endeavours. I’ve added a few comments of my own so here it is.

Voltera V-One Pros

  • Voltera have done an exceptional job with the software user interface and look and feel of the product. In much the same way that the Arduino platform makes embedded microcontroller technology accessible to the masses, I feel the V-One does the same for PCB prototyping.
  • The printer has everything you need to get started to print your own ‘Hello World’ project. Batteries are included.
  • The printer allows you to fabricate single layer PCBs in less than a day, even on unusual substrates such as glass or flexible polymers.
  • Double sided PCBs are supported. There are extra steps such as drilling the through holes after curing the first side then aligning the second side then print and cure. A simple double sided PCB could also be done the same day. You manually fill Via holes with paste so they plate through.
  • The printer accepts standard PCB file formats (GERBER) and doesn’t appear to have any difficulty reading them correctly.
  • The printer allows for aligning different designs over pre-existing prints or for double sided PCBs.
  • It also has a paste dispenser so you can lay down paste and then hand load components.
  • The heated bed, used for curing the conductive ink, will go hot enough to reflow the paste once you have parts loaded. You can even modify the temperature profile to behave in a custom manner.
  • If you have standard PCBs with HASL finish then they have a specific paste you can use with them and it will reflow those as well. We are likely to make a lot of use of that feature. And the machine is faster at this than printing because the ink curing time is an hour but paste is ready to go the moment it is dispensed.
  • The conductive ink seems to live up to its promised conductivity.
  • And the biggest Pro of all: if you need a PCB today, then you can have your PCB today, as long as it is within the process capabilities of the Voltera V-One.

So lots of positives there.

Voltera V-One Cons

  • Don’t expect this printer to make production quality PCBs for you.
  • It doesn’t support solder masks. Plus that would take up a lot of ink. So you will want to think about whether you want to coat the PCB after assembly with a varnish.
  • And there is a lot more work to getting a double sided board together.
  • You also won’t end up with as neat a result as you can get from production PCBs hand loaded. However the paste dispenser is definitely going to get a lot of use on HASL finish PCBs so we see that as a major win.
  • Because the PCB sits on top of the rails when it is being cured, you can’t run tracks out to the edge of the PCB.
  • We made some cardboard spacers to allow us to position the blank PCB in the center of the bed. Otherwise it can be awkward to get the printing aligned with the PCB. So this is an area that needs improving.
  • And while they do intend to release a milling accessory, it isn’t ready yet. That is also on our “to get” list.

Overall, I have been quite impressed and look forward to seeing what this printer will have to offer in future.

This post was jointly produced by Ray Keefe and Andrew Walla.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

arcHUB

Tonight I was at the CleanUp 2017 conference awards dinner. We recently learned that the the  arcHUB Smart Cities device was a finalist for the Agilent Award for Innovation in Analytical Science. This award was presented tonight.

 Clean Up 2017

Clean Up 2017

The arcHUB Smart Cities device measures multiple data types that are useful for the management of Smart Cities including particulates, gases, micro-climate, pedestrian traffic, water level and supports a host of other sensor types.

Agilent Award 2017 Announced

Agilent Award 2017 Announced

The Agilent Award for Innovation in Analytical Science presented during the CleanUp 2017 conference awards dinner.

arcHUB - Agilent Award Presentation

arcHUB – Agilent Award Presentation

The arcHUB Smart Cities device was runner up with the University of Newcastle winning the award.

arcHUB - Agilent Award Certificate

arcHUB – Agilent Award Certificate

Above we have Brian Oldland and Richard Dluzniak of The Active Reactor Company with Ray Keefe of Successful Endeavours at the CleanUp 2017 conference awards dinner with the award certificate as runner up for the Agilent Award for Innovation in Analytical Science 2017.

arcHUB - Agilent Award For Innovation In Analytical Science 2017 for Australia

arcHUB – Agilent Award For Innovation In Analytical Science 2017 for Australia

The arcHUB Smart Cities sensor suite is an excellent example of a designed in Australia, Made in Australia product with massive potential for environmental and Smart Cities monitoring throughout the world.

Agilent

Agilent

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Agilent Award for Innovation in Analytical Science

We are pleased to announce that our client, The Active Reactor Company, are finalists in the Agilent Award for Innovation in Analytical Science 2017 this coming Tuesday 12 September 2017.

Agilent

Agilent

This is for the arcHUB Smart Cities device that measures multiple data types that are useful for the management of Smart Cities. The initial data set is:

  • wind speed (external anemometer attached)
  • sunlight level
  • night light level (street light monitoring etc)
  • temperature
  • PM2.5 particulate levels
  • PM10 particulate levels
  • Gases – CO, H2S, SO2, NO2, H2S
  • Humidity
  • People counting (PIR based anonymous counting)
  • Soil moisture levels (external probe)

It is also the HUB and coordinator of a Sensor Area Network that can include modules that can measure any of the above as well as:

  • vibration
  • shock
  • movement
  • water level
  • GPS location
  • USB charger current (for usage analysis)
  • counting any device or system that has a pulse output
  • analog voltage measurements (AC and DC)

arcHUB trial at Fitzroy Gardens

arcHUB trial at Fitzroy Gardens

The arcHUB is solar powered and includes a cellular modem to allow reporting back to a web service. It is designed to mount to a pole using straps but can easily be mounted to a wall or any other typical structure. A typical scenario is measurements every 15 minutes (except people or pulse counting which are continuous) and uploading to the web service every hour.

With the release of CAT-M1 services across Australia by Telstra, we are expecting migrate to this communications standard because it will reduce power consumption by at least a factor of 4 which will further improve battery life.

We are looking forward to the awards outcome on Tuesday night and wish The Active Reactor Company all the best.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Powering Telemetry

A big issue in the world of the Internet of Things, or IoT as it is abbreviated, is how to get power to remote devices. And this splits up into 2 separate but definitely related problems:

  • the power source
  • the power consumption

Obviously, if the power consumption is high, the power source has to be capable of providing a lot more power. We looked at this in our IoT – Remote Telemetry Case Study. So let’s tackle that one first.

And the focus for this article is remote devices using Solar Charging. Before we look at that specifically, let’s understand the problem.

Power Consumption

There are multiple ways to reduce power consumption. These were covered already in Reducing Power Consumption and Reduce Power While Awake with examples given in Sleep Saves Energy.

Low Power Sleep Mode

Low Power Sleep Mode

The short version of this is that you have to do 2 things at the same time:

  • reduce the average power that is consumed all the time
  • reduce the energy required to process an event

The first of these is also known as Quiescent Power Consumption. This is the power consumed just running the system when it is doing nothing, or close to it. At a minimum, the Power Supply has to deliver this amount of power just to make sure that we could react to an event, should it occur. And I can hear you thinking that it is hard to get this low enough and still have a responsive system.

Correct! But you have to have at least this amount of power or Game Over!

Which is where the second part comes in. You also need some power to respond to events. These can be something you need to log, or reports you need to post. If you are uploading to a web service using cellular communications, the peak power consumption can be very high. So you have to minimise this time.

We would normally model both of these and work out a power budget based on the worst case scenario model. Excel is a suitable tool for doing simple modelling of this as well as scenario modelling.

But I can hear you thinking “why worst case“? Answer: “Because you want it to always work, not just work on average“!

Telemetry

Telemetry means measurement at a distance or remote measurement. So you are measuring something at location A, and want to know the value of the measurement at location B. This implies the 2 locations are not close enough together that this is a trivial problem to solve.

In our world, Telemetry can mean anywhere on earth, though our customers are usually in Australia. In NASA’s world, (maybe world is the wrong term for them) it can be anywhere in the solar system. Voyager 1 is currently more than 18 billion Kilometers away and has been active for 40 years.

Artist's concept of Voyager in flight

Artist’s concept of Voyager in flight

The challenge for low power consumption, is how to get the measurement from location A back to location B?

Solar Charging

The NASA solution is simple. Near sun facilities are Solar Powered, and the rest use some form of nuclear power. Since no-one will ever let us nuclear power any Telemetry device, and I’m Okay with that, and we are near enough to see some sun, we will follow that option instead. And besides which, we can do it in our office and not a heavily shielded facility.

So lets recap on what we know about solar charging:

  • ignoring the energy cost of making a solar panel, the energy cost is free after that
  • there is a maintenance cost which includes cleaning panels
  • provided the construction is robust, they are a long life product
  • you have to do Maximum Power Point Tracking (MPPT) to harvest the most energy or minimise the panel size

And to get more power from a solar panel, you have to:

  • have more sun
  • have a better angle to the sun (cosine reduction)
  • have a better MPPT
  • handle lower voltages
  • use the right silicon

Not all Solar Panels are equal. If you want you panel to work in a mostly shady place then you might also want to use mono-crystalline Silicon solar cells because they are efficient and can continue to convert even low levels of light. In recent developments the efficiency of conversion had passed 25% as reported in Efficiency of Silicon Solar Cells Climbs and some of the stacked cell technologies are past 40% efficiency.

compact solar cell

compact solar cell

And then you have to harvest that energy. Which is where new devices like the SPV1050 come in. Experiments in our office showed that we can charge a Lithium Polymer battery from the internal lighting. And it is a buck boost converter meaning that it can charge the battery in full sunlight (reducing voltage) and also moonlight (increasing voltage) and the device costs less that $2 in 1K pieces.

I only have on criticism. The super low quiescent current LDOs would have been more useful if they were fully independent because this would have taken another item off the Bill of Materials.

Primary Cells

The other option for Telemetry is using Primary Cells. These are not rechargeable and so must last the life of the product. We currently deploy Cellular based Telemetry modules that can run for up to 10 years from a Lithium Primary Cell or 5 years from Alkaline Primary Cells. This is ideal for Smart City style projects where the devices might be moved as they fulfill their current purpose. A good example of this is people metering or pedestrian counting where a council may want to know how much use an area is getting. Once that is understood, the Telemetry module can be redeployed and since it isn’t connected to mains power you don’t need an electrician to do that. Or they could be used to understand the level of demand of public transport services in real time so you can adjust capacity on the fly.

So there are options and as technologies like NB-IoT and CAT-M1 come online the power budget for cellular communications continues to fall. We covered this in Cellular IoT Communications. And as of last month, Telstra turned on CAT-M1 across the 4GX network.

Quectel BG96 CAT-M1 Module

Quectel BG96 CAT-M1 Module

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Electronex

Electronex is the Australian Electronics Manufacturing industry annual expo. This year it is at the Melbourne Park Function Centre from Wednesday 6 to Thursday 7 September 2017. You can see all the details at Electronex.

Electronex 2017 animated logo

Electronex 2017

SMCBA

In parallel the SMCBA (Surface Mount & Circuit Board Association) is running their annual conference. This year the primary sessions are:

SMCBA Surface Mount & Circuit Board Association

SMCBA

The program has two internationally renowned presenters for SMT Manufacturing Vern Solberg and Phil Zarrow presenting on the topics.

Vern Solberg

Vern Solberg

Phil Zarrow

Phil Zarrow

And I’m presenting 2 of the open sessions which include a look at the role PCB Design takes in the overall Product Development and the 5 areas of cost you must manage if you want to minimise the total cost of a product.

PCB Design Tradeoffs

This topic looks at the Product Development process and how PCB design fits into that. This is to do with the trade offs between product features, what you do in HW, what you do in SW and how to select the technology you want to put on the PCB based on the combination of CEM or in house capability, component lead time, test requirements and product cost.

CEM of course means Contract Electronics Manufacturing. Also called EMS (Electronics Manufacturing Service) or ECM (Electronics Contract Manufacturing).

Total cost of product ownership

The total cost of ownership of a product is a concept that looks at all the investment required to bring a product to market and manage it throughout its life cycle. It isn’t just a case of minimising R&D spend or getting the Bill of Materials to a minimum. That will usually lead to a higher cost product.
What will be presented is a model looking at the 5 major costs areas involved in the development of a product throughout its life cycle and how taking all 5 into account can enable you to get the best return on the important investment made in bringing new products to market.
It will also examine a case study where a product development delivered a next generation product to market that allowed the manufacturer to lower their price, triple their profit margin and increase their market share, all at the same time.

Successful Endeavours Exhibiting

And we are also pleased to announce that we are exhibiting this year for the first time. So if you are coming then we are at stand C1 next to Duet Electronics.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Next Page »