Successful Endeavours - Electronics Designs That Work!

Innovation


Smart Cities

This follows on from our look at Smart Cities and the technology mix being considered for how you implement them. For this post we will look at the development of a Smart City Telemetry sensor suite and the ICT communications that go with it. This is also a classic IoT case study.

I also want to point out that a Smart World will only happen if we have Smart Regions, Smart Countries, Smart States or Territories, Smart Cities and Smart Neighbourhoods.

arcHUB

My thanks go to The Active Reactor Company for giving me permission to share their story about the development of the arcHUB Telemetry sensor suite which is aimed at the Smart Cities programs as well as being more widely deployable.

arcHub Telemetry Module

arcHub Telemetry Module Logo

A few days ago I had the opportunity to speak with Daniel Mulino who is the State Member for Eastern Victoria. The picture below comes from his visit to our office in Narre Warren. The original post he made along with my explanation is here. I’m giving a more detailed explanation below including some history.

Ray Keefe - arcHUB - Daniel Mulino

Ray Keefe – arcHUB – Daniel Mulino

For those wondering about the device I am holding, it is an arcHUB Smart Cities Telemetry module aimed at Smart Cities projects and environmental monitoring where you don’t have access to, or want the cost of, connecting up mains power. This is designed for The Active Reactor Company and is already involved in 1 Smart Cities deployment and multiple trials of low cost sensor modules by councils and government agencies in 3 states. I can’t yet provide specific details on those as they are covered by non-disclosure agreements.

To understand how we got here, it helps to know the history.

The Active Reactor Company make a product called The Active Reactor. It improves both the efficiency and the life of arc lamps such as low pressure sodium street lights, high pressure Sodium  and metal halide lamps.

The Active Reactor

The Active Reactor

With the advent of LED street lighting their current product is not needed for new installations and so they wanted to secure the future of the business. So a great example of addressing an issue that will arise in the future so you are ready for it rather than just reacting to it once it happens.

Initially the new product was aimed at monitoring LED street lights. One of the big issues with LED lighting is that the LEDs either fail over time or they fade and lose brightness. Or a mixture of both. The fading is a result thermal diffusion in the semiconductor substrate. When they fall by more than 30% then you have to address that as they no longer comply with legal standards for lighting levels. The other catch is that the claimed life of 10+ years isn’t yet proven and so it is expected that there will be many lights that fail early or fade early or both.

Of course, once you have a communicating device that can monitor one thing and report it, it can also monitor other things and report them as well. Plus there were issues with being allowed to monitor the light. And where would the power come? Their inquiries with authorities responsible for the poles would not give permission to tap the power in the pole or light.

So this set us the follow set of constraints to work within:

  • must be battery operated
  • easy to install
  • low cost to make and also run
  • communicate using the cheapest data transport
  • monitor the LED light at night and keep track of the brightness trend
  • send an alert when it is persistently out of specification
  • field life to match the street light (10+ years)

As The Active Reactor Company talked to target users (initially the same people who buy their current product) and got an idea of what they wanted, a very different picture emerged. The people who cared about LED street lighting, also cared about micro climates, and soil moisture levels, and air quality, and foot traffic, and …

So that lead to a change of direction and a look at what else was required. The result is a device aimed at the Smart Cities market that also suits a wide range of other end customers and has the following features you won’t find combined together in conventional devices:

  • battery operated (either solar charged or primary cells)
  • minimum 2 year battery life for standard AA cell alkaline batteries
  • 10+ day running time if solar charging is lost
  • up to 20 days on board non-volatile storage
  • compact form factor
  • multiple sensor types per node (up to 20)
  • sensor area network to minimise data costs
  • over the air firmware upgrades
  • over the air configuration updates
  • variable sample rates and upload timing
  • still has to be low cost to make and also run
  • easy to install

So here is the range of sensors already trialed:

  • wind speed (external anemometer attached)
  • sunlight level
  • night light level (street light monitoring etc)
  • temperature
  • PM2.5 particulate levels
  • PM10 particulate levels
  • Gasses – CO, H2S, SO2, NO2, H2S
  • Humidity
  • People counting (PIR based anonymous counting)
  • Soil moisture levels (external probe)

It is also the HUB and coordinator of a Sensor Area Network that can include modules that can measure any of the above as well as:

  • vibration
  • shock
  • movement
  • water level
  • GPS location
  • USB charger current (for usage analysis)
  • counting any device or system that has a pulse output
  • analog voltage measurements (AC and DC)
arcHUB trial at Fitzroy Gardens

arcHUB trial at Fitzroy Gardens

The arcHUB is solar powered and includes a cellular modem to allow reporting back to a web service. It is designed to mount to a pole using straps but can easily be mounted to a wall or any other typical structure. A typical scenario is measurements every 15 minutes (except people or pulse counting which are continuous) and uploading to the web service every hour.

With the release of CAT-M1 services across Australia by Telstra, we are expecting migrate to this communications standard because it will reduce power consumption by at least a factor of 4 which will further improve battery life.

Quectel BG96 CAT-M1 Module

Quectel BG96 CAT-M1 Module

The arcHUB Peripheral Modules connect via 915MHz ISM Band communications and use standard AA batteries. They can run for between 2 and 5 years depending on what sensors are attached and how often they are read and reported. If you used primary lithium cells then you can expect life beyond 10 years.

The arcHUB Peripheral Modules are also capable of stand alone operation with the addition of an internally fitted cellular modem so you can have a portable people counter module that can be easily moved to a new location and doesn’t require an electrician to install it.

And pretty exciting to also announce that this is not only a designed in Australia product range, but it is also a made in Australia product range.

Again, my thanks to The Active Reactor Company for permission to share this story and if you want to know more, leave a comment and I will put you in touch with them.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Holograms

Holograms are the product of Holography. This sounds rather self referencing. You can think of this as recording light the way you record sound. So you can have monophonic sound or full surround sound. A 3D Hologram allows you to see the original object from different directions as you move around it even though it is no longer present.

We have all seen futuristic movies where a 3D rendering of someone appears as if it was the person really there. And this is one of the goals of 3D Holograms. So it is exciting to see some breakthroughs in this area being pioneered in Australia at RMIT University.

This is also a good example of collaboration, something we don’t see enough of in Australia.

You can read the full story at World’s Thinnest Hologram Promises 3D Images on Our Mobile Phones.

3D Hologram

3D Hologram

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Putting Light to Work

Light is a really interesting thing. It has so many different aspects. And it took us a long time to work out exactly how it functioned. And in many ways that is still an ongoing process. So this post is a brief survey of some recent advances in our understanding of light, how to use it, and how to generate it.

Extracting Energy from Light

Recent advances in Quantum Dots have taken us one step closer to improving our extracting of energy from light and Solar Cells continue to improve.

Quantum Dot Solar Energy Conversion from Windows

New record for Solar Cell efficiency

Interactive chart of Solar Cell technologies and inefficiencies

The chart below is from the link above and shows that the fastest improving Solar Cell technologies (the 2 steepest red lines) are Perovskite Solar Cells and Quantum Dot Solar Cells. Click to get a larger version. Or go to the interactive link where you can get more detail for each dot.

Solar Cell Efficiencies - By Time And Technology

Solar Cell Efficiencies – By Time And Technology

And for a good summary of PV (PhotoVoltaic) technologies the link below provides a useful guide.

What makes a good PV Technology

So apart from turning the light in electricity, what else can we do with light?

Light for Communication

Light is also useful as a communications tool. And recent advances in Quatum Dot management of light means it could hold the key to higher levels of computing power in the future, as well as more secure communications.

Quantum Dots set speed record for switching

Phototonic Hypercrystals improve light control

Photonic Hypercrystals

Photonic Hypercrystals

Saucer Shaped Quantum Dots improve LASER brightness

2 steps closer to a Quantum Internet

The last link is particularly interesting because it involved entangling photons at a distance. And the first experiments have already been successful.

Quatum Entangled Photon Communications

Quantum Entangled Photon Communications

But is there more?

Other uses of light

As it happens, yes there is.

Nanoscale structure purifies water using light

Artificial Photosynthesis extracts CO2

So this remains a very busy space.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Connect Expo

the Connect Expo is on each year around late March in Melbourne at the Exhibition and Convention Centre. I had gone to previous events but this was our first time as an exhibitor.

Connect Expo - Successful Endeavours

Connect Expo – Successful Endeavours

This was by far the best Connect Expo I have been to. The mix of software vendors, web platform vendors, component suppliers and specialist IT vendors was excellent and there was also a specific section for eHealth. We set up our own IoT Platform demonstration with a QR code you could scan with a phone and take you to a webpage showing real time (less than 5 second delay) updates to the status of a device on the stand. A simple demo of the Internet of Things in action.

We will definitely be going again next year.

A really good trend I noticed was several Software Testing companies represented in the mix. Testing to confirm software is working correctly is a very important part of delivering a high quality product and it was good to see this coming through at the industry level.

We also shared the stand with Minnovation who do data science and analytics so it was also good to see how rapidly that area is expanding.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Making Music is Creative

Making music is a creative process. At every level. There is not only composing and playing, but there is the instruments themselves and also how we record and play back music. Technology and creativity abound at every level.

I’m a musician. That is how I ended up in Electronics Engineering. I even wrote a blog piece about how Music Electronics was where my passion for creating new electronics devices all began.

Miller Puckette

I learned something new this week about music creation. I use Ableton Live as my sequencer and it incorporates a product from Cycling 74 called MaxMax was created by Miller Puckette quite a while ago. So I see another soul keen to push the boundaries of what is possible and was fascinated to read his history. Everything from Teaching Music at UCSD to creating music software like Max in 1988, its successor starting around 1996 which is Pure Data, or Pd as it is usually abbreviated, and which was set up to be an open source project so others could contribute and it wasn’t locked down by commercial constraints like Max is.

Miller Puckette - musician and music technology creator

Miller Puckette

I was also pleased to hear that Miller Puckette continues to perform music. This is something I also enjoy.

The only way to understand what is possible with tools like Pd is to see it in action. Enjoy.

Did you notice that the player on the left is moving his hands on a cloth covered platform. This is being tracked by a camera and the hand movements are used to trigger notes and other controllers and effects. You can reach him at Jaime E Oliver and the cellist accompanying him is Michael Nicholas.

PdCon

And if you found that interesting, then check out the concert video from PdCon16~ . That’s right, Pd has its own conference.

The first video has Miller Puckette as a contributor.

And the last one also has Miller Puckette as part of a duo. This is all very avant-garde yet the degree of expression possible is amazing.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

Outdoor Positioning Systems

We have all become very used to the idea that a phone or car can know where it is using GPS or one of the equivalent satellite based positioning systems. And it gets better all the time. Modern chips can get you down to centimeters under ideal conditions.

But have also all had the experience when we go indoors and the position information disappears.

So is there a solution for that?

Indoor Positioning Systems

It turns out there is. Or at least, there a quite a few. They all have their drawbacks and most require you to add technology to the indoor area to get it working. Lets do a quick survey to see what Indoor Positioning Systems are out there.

GPS Repeaters

GPS Repeater

GPS Repeater

The first one is using GPS indoors. If you have a high enough roof you can put a GPS repeater on it and project the satellite reception into the building and suddenly GPS works inside the building. We use exactly this technique when needing to test a GPS device inside our building. See GPS Repeaters for one example product.

Radio Beacons

This covers a very wide range of technologies, of which Bluetooth Beacons are the current industry trend. And they can work either way. You can wear the beacon and the receiver track you and use your RSSI to calculate your position, or you have the receiver and monitor the beacons to achieve the same result.

Bluetooth Smart Beacon

Bluetooth Beacon

Increasingly these systems are being used for applications like tracking patients in hospitals and residents in retirement villages.

WPS WiFi Positioning System

You have a WiFi network, so you can use the network as a WiFi Positioning System or WPS. This is similar to the Radio Beacon system and uses the RSSI from your device to the WiFi Access Points.

Dead Reckoning

This uses Inertial Navigation components to keep track of your distance and direction from a known point. It is usually used in conjunction with another system such as GPS outdoors and Dead Reckoning in tunnels to keep an accurate estimate of a vehicles position on a map. And low cost MEMs based devices are now available to provide Inertial Navigation readings.

MEMS Accelerometer

MEMS Accelerometer

The weakness is the double integration of the signals leads to noise accumulation and the accuracy of the position estimate decreases over time.

IR Techniques

These vary a lot. From a sea of emitters overhead to give a location grid to emitters firing down row and aisles in warehouses and even corner emitters firing angle encoded signals picked up and decoded using sine rule mathematics.

IR Angle Emitter

IR Angle Emitter

The image above is a system we design in 2006 to do angle based IR location detection in GPS blind spots for container handling equipment. This was capable of locating equipment to within 0.5m.

Time of Flight

This allows you to more accurately work out the distance from the emitter to the receiver but requires very precise timing in both.

Magnet Field Monitoring

This is an obvious one, but most modern smart phones have a compass in them. The usually aren’t a very good compassand that can make this option not viable. However if you do have a good enough compass, you can use local disortions on the magnetic field due to steel structures in a building to estimate your location.

Indoor Position Conclusion

And of course, you can use a combination of the above to meet the specific requirement you have. As usual, the classic trade offs apply. These are:

  • accuracy
  • cost
  • size
  • battery life

For some addition insights check out 10 things you need to know about Indoor Positioning.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Design Led Innovation

Traditional Product Development comes up with the product idea, does the development, gets it into production and then tries to find customers to sell it to.

Design Led Innovation tries to turn that process around so the actual needs of the customer or user become part of both the product definition and the business model development. If you haven’t already heard of it, check out the Business Model Canvas.

I get the opportunity to present on topics like Innovation to Business Groups and even MBA programs and one of the interesting statistics I use is that the number one area for Innovation in the world today is the Business Model.

How Does Design Led Innovation Work?

So how does this all work?

Design Led Innovation

Design Led Innovation Process

In Design Led Innovation, the expected outcome is that when you engage with your customer, and begin to understand their needs, then you can start to offer them something that has much higher value for them and allows you to get a better price for offering that much higher value. The outcome is the classic win:win that great business is meant to deliver. And it is a key factor in not getting caught in the classic commodity service price war with the client’s purchasing officer driving the process.

It is also a continuous process. One description is that it is like “rebuilding the plane while it is in flight”.

Sounds scary, but the results seem to show it is well worth doing.

Design Led Innovation session at SEBN

At a recent SEBN breakfast session we heard from Tricomposite about their  experience of using Design Led Innovation to revolutionise their business and not only service their existing customers better, but offer them products they didn’t even know they wanted and create a much better value offering for them than they had ever considered before. And this has opened up potential market offerings to other customers who they would never have considered they could work with.

Here are the themes they explored in finding this offering:

  • focus on designers, not buyers
  • test is time pressure leads to design mistakes
  • test is rapid full-sized final material prototypes were valuable
  • test if there was room for service level agreements
  • test if there was room for collaborative design

And the answer to 4 of these was a resounding yes. Only the service level agreement test failed. Basically, customers expect service as a given. But the rest has opened up a complete rethink of their business. In fact, they shared that it was their existing perspective on their business that proved to be their biggest limiting factor.

Business Model Canvas

Rethinking the Business Model is a key component of Design Led Innovation. But not as an end in itself. Only after understanding your customer’s real needs can you determine how to make it easier to do business with them.

I recommend getting the Business Model Canvas book and taking advantage of the free downloads at Strategyzer. Here is a example of one of their tools.

Business Model Canvas Example

Business Model Canvas Example

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Digital Tomorrow is Today

The most recent Casey Cardinia Business Group breakfast heard from Chris Riddell, futurist. This is a summary of what he said.

Chris Riddell - Futurist

Chris Riddell – Futurist

The future is already here. The digital revolution has happened. So what about tomorrow?

This is the question Chris posed to the room at the start of his presentation.

Chris asserts that the technological revolution has already happened. Now it is Velocity that counts. So what does Velocity mean?
In Software Development, Velocity refers to the rate with which you are completing a project. If Velocity is too low, you will not finish on time. Ideally Velocity is above the original planned value and you will deliver ahead of schedule. At the very least, this allows you time to test comprehensively. Projects running late often compromise on test in order to save time. This tactic usually adds time in the long run.

His first example was OTTO. This is a start-up of ex Google employees who are developing self-driving track technology that can be retrofitted to existing trucks. So you don’t need to design a new vehicle, you can add their system to your existing fleet. They have early adopted product in the market (delivering beer via self-driving trucks) and hope to be fully market ready in 9 months. And uber bought OTTO. This rapid time to market is an example of the increasing Velocity available today.

OTTO self-driving truck

OTTO self-driving truck

A local example we are working with is Maintabase. This is a Melbourne based start-up that came to us 2 months ago with some “off the shelf” hardware to try and configure it as a demonstration of their asset management concept where you can monitor machine cycle and operating time automatically and identify when maintenance points will be reached. Like OTTO, this can be retrofitted to any existing machine. They were trying to use “off the shelf hardware” for good reason; low development cost. However the hardware was difficult to configure and use, not very flexible, and ultimately not what they wanted in a final product. It was never going to do what they needed and was only ever an interim measure. So we created the product they need and they are launching it at Future Assembly in the IoT Category. See Future Assembly – IoT – Maintabase for more details. So idea to launch in 8 weeks!

Maintabase

Maintabase

And then there is Tesla who have reinvented the modern passenger automobile and already offer autonomous cars.

Tesla

Tesla

And now a medical example. 23 and Me will send you a DNA kit. You provide a saliva sample in the test tube they provide. They then send you a detailed report describing your genetic ancestry, what health issues you will expect have in the future and even what kind of children you will have with your partner (you need 2 samples for that). This was banned in the USA due to concerns about how to regulate it so they moved to Europe and launched there. Now they are also able to operate in the USA. 5 years ago a service like this would have been prohibitively expensive. Now it is a very affordable tool to allow you to manage your life better.

23 and Me - Welcome to You

23 and Me – Welcome to You

We also see the huge burst of activity in Wearables that allow you to quantify things like quality of sleep, activity level and a whole range of health and other indicators. The Quantified Self requires measurement and these devices do a good deal of that already.

Lean Digital Start-Up

Computing technology is also changing so rapidly that you can do a hugely scalable start-up in a shed. This is technology going full circle. HP started in a shed. So did Google and Apple. The shed may become the new business launch model.

This allows a new class of business opportunities lumped under the banner of the Lean Start-Up. I’ve added “Digital” to the mix because there is a lot of emphasis now on being able to scale quickly. So we have the Lean Digital Start-Up. So low investment, low risk, potentially huge upside, potentially scalable. The failure rate of Lean Digital Start-Ups is unfortunately also huge. About 25 times the failure rate of conventional businesses. The risk due to failure is much lower and they can pivot rapidly. This is Agile applied to the Business Model.

Old world businesses are like huge plantations and have a specific focus and everything is about optimising that focal point. By comparison, the new business paradigm is like hacking your way through a rain forest looking for a breakthrough plant or animal that holds the cure to something incurable. The latter is a much more chaotic process and results are unpredictable.
Access to technology means that even mobile phone calls and SMS are old hat and is all about video, high speed data sharing and experience.

The Future – What Next?

BMW have just celebrated 100 years in business. That is a great achievement. If you go back 50 years, it was all about the product, the technology, the reliability. Today it is all about the experience. And they are talking about selling transportation services rather than vehicles in 10 years time.

Super Fluidity is now the norm. You can transfer data almost instantly to anywhere in the world. Today you can design a product , send the file somewhere else on the planet and have it 3D printed . You can now 3D print food. Oreos can be custom designed by you and then made for you and shipped to your address.

Why is Google self driving cars happening? Google do search and other data stuff. The answer from Google is that a driver-less car is a mechanical problem that needs an information solution. And Google are an information solution company.

Why is Lego still in business? It is a plastic block. Easy to copy and many have done it. Yet today they are the most influential toy company in the world. Everything is about the user. You can design your own kit, select the blocks, buy it and have it delivered to your door. You can build it on screen, have it 3D rendered and sent to your device to show or share with your friends.

Apple have enough cash on their books to pay out Greece’s national debt 3 times over and still run their business for a year even with no sales. And they did it by making their product easy to use and putting a full ecosystem together to support the user.

Air bnb, uber, Spotify and many other companies are leveraging great user experiences and offering great value.

We are headed into an era of no screens, augmented reality and where the world is your screen and data is your overlay.

Pretty exciting times lay ahead as we catch up with the capability the Digital Revolution already lays before us.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

DSLR or Digital Single Lens Reflex Camera

Ignoring the play on words, the light camera is a major breakthrough in the use of multiple optical viewpoint cameras to create synthetic images that can be taken with something the size of a smart phone and rivals DSLR Camera photographs.

And spoiler alert, I’m getting one as soon as I can. Read on to find out why.

I enjoy photography and appreciate the balance between the size and convenience of my phone camera and the control and quality of image possible in my DSLR (Digital Single Lens Reflex) camera.

Lets look at how a DSLR camera works. This image is by en:User:Cburnett – Own work with Inkscape based on Image:Slr-cross-section.png, CC BY-SA 3.0, Link.

Single Lens Reflex Camera Cross Section

SLR Camera Cross Section

The photographer can see the subject before taking an image by the mirror. When taking an image the mirror will swing up and light will go to the sensor instead.

  1. Camera lens
  2. Reflex mirror
  3. Focal-plane shutter
  4. Image sensor
  5. Matte focusing screen
  6. Condenser lens
  7. Pentaprism/pentamirror
  8. Viewfinder eyepiece

For a Film SLR camera the sensor is the film. For the DSLR Camera the sensor is a digital image sensor CCD or Charge Coupled Device. These cameras use precision ground lenses and are capable of high levels of control and image quality. They also don’t fit in your pocket unless you have a very large one.

Below is a high quality rendering of a DLSR Camera provided by David McSweeney of Guru Camera. Much appreciated David. Click  on the picture to get a full size version.

DSLR Digital Camera Section

DSLR Digital Camera Section

The Light Camera

Light - a new camera concept

Light – a new camera concept

I am very grateful to Dr Rajiv Laroia who co-founded Light. Not only has he developed a breakthrough concept in portable digital photography, but he has been very open about how he went about it and how it works. This is an excellent example of the new Collaboration landscape we now work in. He took his idea to experts to validate it rather than hiding it and hoping no-one would steal it.

IEEE Spectrum have a very detailed article Inside the Development of Light which outlines the whole journey. There are several stand out points here:

  • he solved a problem he had – it represented a practical need he understood
  • he got expert advice early
  • it required a significant shift from the best of breed technology in place now
  • he knows his first version is just that
  • there is a long term product strategy in place
  • he is teaching the world how to do it so that he has first mover advantage rather than a monopoly

The last point is interesting for me. The days of monopolies are coming to an end. The days where a Brand could overcome deficiencies in an offering aren’t yet over but they are fading. Today you can source reviews from peers and industry forums and a Brand can’t as easily dominate a market just by reputation or marketing blurb. The products have to be as good as the Brand claims they are.

Dr Rajiv Laroia - cofounder of Light

Dr Rajiv Laroia – co-founder of Light

So back to Light. Dr Rajiv Laroia has started something we will all benefit from. The concept is brilliant and the results and funding are in place to make is commercially successful.

Will we see it in a smart phone soon?  I can see cut down versions of this concept being deployable in the very near future. The processing power is the challenge in a low power hand held device that is also doing cellular communications. So battery life versus quick availability of the finished pictures is the trade-off right now.

Is it doable in the long run? Absolutely!

Light in Action

Here are some videos covering the development journey, the first commercial version and the use of the camera.

 



Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Mechanisms

Mechanisms are important in many aspects of modern life. They adjust the focus on your smart phone camera, put the wheels down when a plane is coming in to land, allows automobiles, trains, trucks and ships to move and even allow probes to roam about on the surface of Mars.

So I was very surprised to learn that a newly developed rotary gear mechanism, or transmission,  is the first major new gear design since 1957!

Abacus Gears

Lets cut straight to the chase and I’ll then back fill details later on.

Abacus Gear Mechanism

Abacus Gear Mechanism

The Abacus Gear Mechanism uses a series of rolling elements that move through a series of shaped channels that changes the rolling radius as the mechanism rotates. The results is a gear ratio between the inner driving hub and the out rotating hub. Sound complicated?

I guess this is why it has taken over 60 years to come up with the revolution. However there are some serious pluses. The contact points are all pure rolling elements unlike conventional gear teeth where some sliding motion (causing to wear) is involved. This should lead to improved gear life. It also has no backlash. This is ideal for robotics where backlash (the loss of motion when changing rotational direction on a gear due to clearances) is a big problem for keeping a precise knowledge of the position of the object under motion (a pickup arm for instance). And the rolling elements and the channels they roll in can be adjusted in shape. So although the first version, named “Abacus” because the shape of the rolling elements resembled the beads on an Abacus, had one shape of rolling element, the invention is not limited to that and the elements could be spheres.

And all of the above leads to another major benefit. It is significantly more efficient than the Harmonic Drive which was invented in 1957 and is the leading contended for robotics gears today.

There is a detailed article including a video on IEEE Spectrum at Abacus – First New Rotary Transmission in 50 Years.

The Harmonic Drive

Here is an animation of the Harmonic Drive.

Harmonic Drive

Harmonic Drive in motion

This is pretty cool as a drive concept and also has no backlash.

Mechanical Gear Fundamentals

If you to know a little more about gears and the wide variety of uses they are put to, check out this video.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In Australia. Ray Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2016 Successful Endeavours Pty Ltd.

Next Page »