Successful Endeavours - Electronics Designs That Work!

Electric Vehicles


Smart Cities

Smart City is a blending of current and emerging technologies being employed to allow a city to better manage its assets and deliver value to its residents. It is an emerging concept and still very much in exploration. The 2 core technology areas being investigated as the primary value creators are ICT (Information and Communications Technology) and the IoT (Internet of Things).

Smart City

Smart City

What isn’t fully understood is the relationships between any or all of the list below:

  • what is worth measuring?
  • how to measure it (what sensor, what platform)?
  • how often?
  • in what detail?
  • to learn what from?
  • how quickly to transport the reading?
  • how much will it cost to transport the data?
  • via what technologies?
  • stored how?
  • accessed how?
  • analysed how?

Quite a big list.

Did you know there is a Smart Cities Plan for Australia? I only recently found out. And if you read through it there are more questions than answers. Which I think is the right balance given where we are positioned in trying to understand what is possible versus what is useful.

Smart Cities Plan

Smart Cities Plan

There are some obvious areas already being tackled by ICT systems. These include:

  • transport logistics (road, rail, freight, air, sea)
  • public transport
  • utility services (gas, water, electricity, waste)
  • weather prediction
  • environmental monitoring

And there are a range of trials underway to try and understand what using a broader sensor mix and more widely deployed sensors might do to improve amenity, even if they aren’t all very high quality sensors. Again the questions come back to:

  • what sensors?
  • how many and where?
  • how accurate?
  • how much do they and their platform cost?
  • measured how often?
  • at what latency?
  • what to do with the data?
Smart Cities Segments

Smart Cities Segments

IoT Challenges

Although the Internet of Things (IoT) has a huge promise to live up to, there is a still a lot of confusion over how to go about it. This breaks up into 3 distinct areas.

IoT Hardware

The first is the IoT Hardware device that is deployed to the field. These come in a wide range of shapes, sizes, power profiles and capabilities. So we are seeing everything from full computing platform devices (Windows, Linux, Other) deployed as well as tiny resource constrained platforms such as Sensor Node devices. Examples of the later are Wimoto Motes and our own FLEXIO Telemetry devices which are OS-less Sensor Nodes.

The trade offs are between:

  • power consumption
  • power supply
  • always online versus post on a schedule or by exception
  • cost (device, data, installation, maintenance)
  • size
  • open standard versus proprietary
  • upgrade capable (over the air OTA firmware or software capability)
  • security

As of a month ago, the KPMG IoT Innovation Network reported there are 450 different IoT platforms available. And most don’t talk to each other. Many lock you in. Many only work with their specific hardware. So picking a hardware platform is only part of the challenge. And new products appear every week.

IoT Innovation Network

IoT Innovation Network

IoT Communications

The second area of challenge is the communications. Everyone is trying to get away from Cellular IoT Communications because the Telecommunications Companies pricing model has traditionally been higher than they want to pay, and because the power required means you need a much higher power budget. So there has been a push to find other options which has opened the way for players like LoRa and sigfox.

However the CAT-M1 and NB-IoT Telecommunications Standards mean that the pendulum could easily go back the other way. CAT-M1 reduces the data rate (no streaming video needed for most IoT devices) and changes the modulation scheme so you get a better range at a much lower power consumption. And unlike sigfox, you aren’t severely constrained on how much data you can move or how often. CAT-M1 has just gone live in Australia on the Telstra network and we are about to do our first trials.

Quectel BG96 CAT-M1 Module

Quectel BG96 CAT-M1 Module

NB-IoT doesn’t yet have an official availability date but we aren’t too concerned about that. NB-IoT is really aimed at the smart meter market and similar devices which have low amounts of data and upload it infrequently. So a water meter running off battery for 10+ years is an example of what it is targeting. We will find CAT-M1 a lot more useful. And the modules that support CAT-M1 currently also support NB-IoT so we are designing now and can make the decision later.

IoT Back End

The third area of challenge is the back end. Pick the wrong data service and storage provider and you could find you don’t own your own data and you have to pay every time you want a report on it. And you can’t get at it to port it to another system. And if the volume of data grows the cost can grow even faster as many offer a low entry point but the pricing get expensive quickly once you exceed the first threshold.

Because of this there is an strongly emerging preference for open systems or for systems that do allow you to push and pull data as it suits you.

So our strategy to date has been to provide our own intermediate web service and then republish the data in the required format to suit the end user / client. The result is the best of both worlds. We can deploy resource constrained field devices which are low power and low cost, then communicate with high security and high cost platforms using the intermediate service to do the heavy lifting. And we don’t try and imprison the data and trap the client.

The service is called Telemetry Host and was a finalist for IT Application of the Year in Australia in 2015 at the Endeavour Awards. And again for the PACE Zenith Awards in both 2015 and 2016.

Telemetry Host

Telemetry Host

This isn’t the only approach and so we also create devices and incorporate protocols that allow them to directly connect to other systems. This includes porting our core IP to other URLs which are then owned by our clients. So far we haven’t found that one single approach suits every scenario.

Smart City

You can’t be smart if you don’t know anything. And this is certainly true for Smart Cities. To be a Smart City requires Sensors and Telemetry. But the jury is still out on how much and what kind.

Successful Endeavours specialise in Electronics Design and Embedded Software Development, focusing on products that are intended to be Made In AustraliaRay Keefe has developed market leading electronics products in Australia for more than 30 years. This post is Copyright © 2017 Successful Endeavours Pty Ltd.

 

Batteries Today

There are 4 separate drivers for current battery technology:

  • Cost
  • Size and Weight
  • Capacity
  • Recharge rates and cycles

An example of an emerging industry for batteries is electric vehicles. These require high recharge rates, high capacity, high recharge cycles and acceptable weight, size and cost. So the current front runner in commercial batteries, the Lithium Ion battery, has some challenges meeting these requirements. But it is also the best we have right now.

Adding Super Capacitors

One approach to improving battery performance in peak demand situations is to add a Super Capacitor in parallel with a conventional lead acid battery. The Super Capacitor smooths the energy demand by delivering the high current needed for peak demand and the lead acid battery provides the bulk energy storage.

CSIRO UltraBattery Inventor - Dr Lan Lam

CSIRO UltraBattery Inventor – Dr Lan Lam

The CSIRO developed UltraBattery is a good example of Australian Technology Innovation in next generation batteries. It is one example of their work in Energy Storage. And also good example of their partnerships with industry to bring next generation technologies to commercial reality.

New Battery Technologies

The front runner for the next generation of battery technologies is the Lithium Air Battery. This promises double the energy density per unit volume of Lithium Ion Batteries but at 20% of the weight. So ideal for Electric Vehicles where weight is one of the critical elements.

Lithium Air Battery Chemistry

Lithium Air Battery Chemistry

The reason this is such a promising technology is because it has:

  • high recharge efficiency (90%+)
  • high recharge cycles (>2000 versus 300 for some Lithium Ion batteries)
  • high energy density
  • low weight

So what is the catch?

Researchers believe commercial versions of this battery technology are only 10 years away. That isn’t that long for a new battery technology. The hurdles they still need to face are primarily in protecting the pollution from corroding the metal electrode and preventing dendrite growth which is an existing problem with Lithium Ion Batteries. The electrode wants pure oxygen and is corroded by moisture, carbon dioxide and nitrogen. So some challenges remain.

Using Existing Batteries Better

The other approach is the one we usually take. Use Existing Batteries Better.  This involves better power management, better battery management and rethinking the whole solution to a problem. We showed an example in a recent Remote Telemetry Case Study we did in the Internet of Things space where we took an installation that would have required a 200W solar panel and instead deployed a system that runs from 4xAA batteries for 2 years. The next step is to add an energy harvesting component with a suitable rechargeable technology to take the battery maintenance interval from 2 years to 5 years. Even with the best and most durable rechargeable battery technology around today for regular commercial applications, a 5 year maintenance interval is still needed.

So multiple approaches. I’m looking forward to the next set of breakthroughs in this area. Including marrying the CSIRO Super Capacitors with a Lithium Air Battery.

Successful Endeavours specialise in Electronics Design and Embedded Software Development. Ray Keefe has developed market leading electronics products in Australia for nearly 30 years. This post is Copyright © 2015 Successful Endeavours Pty Ltd.

Victorian iAwards 2015

Last year at the Victorian iAwards 2014 , our client Rectifier Technologies Pacific took out 2 categories for Victoria. This year we are pleased to have 2 clients as finalists and at the iAwards ceremony this evening they both took out merit awards for their category. A merit award means they were judged to be within 5% of the category winners and so also qualify for inclusion in the National iAwards.

iAwards VIC Merit

iAwards VIC Merit

Sustainability

Rectifier Technologies Pacific received a Merit Award in the Sustainability category for the RT18 425V High Efficiency EV Charger Rectifier. This is an important technology breakthrough in high efficiency electric vehicle charging and we were pleased to see them received recognition for that. Software we developed for them is part of the product.

New Product

And Skynanny.net received a Merit Award in the New Product category. 

Skynanny.net iAward merit certificate

Skynanny.net iAward merit certificate – New Product

We are very pleased for Jason and Lynne who have had to persevere through a lot to get to this point. The combination of Bluetooth Smart, Qi Wireless Charging, 3G communications and GPS tracking in a device the surface area of a business card was a big technical challenge and deserved to be recognised.

Skynanny.net celebrate with Successful Endeavours and Zain Digital

Skynanny.net celebrate with Successful Endeavours and Zain Digital

Our congratulations also go to Zain Digital for their work in development of the App and Web Services that supports the product.

The list of winners and merit award recipients can be found at Victorian iAwards Winners 2015.

Successful Endeavours specialise in Electronics Design and Embedded Software Development. Ray Keefe has developed market leading electronics products in Australia for nearly 30 years. This post is Copyright © 2015 Successful Endeavours Pty Ltd.